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Abstract:

Affirmative action policies in higher education aim to reduce economic inequality between historically priv-

ileged and underprivileged groups. This paper theoretically assess the effect of affirmative action policies

on schools’ quality choice and students’ effort choice. Students from privileged and underprivileged groups

are endowed with ability and parental human capital, which along with school quality and effort produce

human capital measured by grades. Students who meet a grade threshold attend university and further

increase their human capital. In the baseline model school quality and student effort are held fixed. Without

affirmative action, privileged group students are overrepresented at university and achieve a higher aver-

age realized human capital. Affirmative action reduces but does not eliminate inequality between groups.

When schools can choose quality, early movers compete for privileged group students by investing highly

in quality, while late movers invest less in quality and educate underprivileged group students. Affirmative

action makes underprivileged group students more attractive and weakens competition for privileged group

students, resulting in a lower quality chosen by early movers. The effect on late movers’ quality choice is

ambiguous, as they adjust quality to put more density in the vicinity of the threshold grade in an effort to

take advantage of the affirmative action policy. When students choose effort levels, those with low endow-

ment choose low effort levels and do not attend university, those with high endowment choose medium effort

levels and attend university comfortably exceeding the threshold grade, and those with medium endowment

choose high effort levels to meet the threshold grade and attend university. Affirmative action reduces effort

by those privileged group students who lose university seats, but increases effort for others who must now

meet a higher threshold. The opposite is true for underprivileged students, and the net effects on average

effort are ambiguous for both groups. Given these ambiguities in school quality and student effort choice, it

is possible for affirmative action to cause inequality to fall, remain unchanged, or increase.
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1 Introduction

Affirmative action policies in higher education are often used as a tool to uplift economically lagging groups

which have historically faced discrimination. India and South Africa have explicit quotas, while universities

in the US and other developed countries have long stated a preference for higher diversity and inclusion

of historically marginalized groups. Such policies can be controversial, as the protests against admissions

quotas in India in 1990, or the US administration’s steps to roll back diversity, equity and inclusion initiatives

in 2025 show. Proponents invoke social justice and other arguments involving externalities that affirmative

action policies can help solve; while opponents argue that such policies encourage slack and are ultimately

ineffective.

This paper theoretically investigates the effect of affirmative action policies on schools’ quality and stu-

dents’ effort level choices, and the consequent implications for the effectiveness of affirmative action policies

in reducing inequality between groups.

My model has two groups – the (historically) privileged and (historically) underprivileged. Students

from each group are endowed with intrinsic ability, which is distributed similarly across groups, and parental

human capital, where the distribution for the privileged group dominates that of the underprivileged group.

Both variables, along with school quality and effort level, are inputs into a human capital production function,

which results in a grade. University admissions follow a simple threshold rule – students with grades above

a threshold attend university and further increase their human capital, with the threshold being determined

so as to exactly clear college seats. Students maximize realized human capital in their decision making,

while schools maximize the realized human capital of their students less the costs of investing in quality.

Affirmative action policies are designed to achieve equal rates of representation at university across groups

To derive baseline results, I hold school quality and student effort levels fixed and homogeneous across

all students. Since parental human capital is an input into grades, the privileged group’s grade distribu-

tion dominates that of the underprivileged group, resulting in overrepresentation at university. A higher

average parental capital and overrepresentation at university both push average realized human capital for

the privileged group higher than for the underprivileged group. Affirmative action achieves equal rates of

representation at university by increasing the threshold grade for privileged group students and decreasing

it for underprivileged group students. The difference in average realized human capital across groups falls

but remains positive because of the disparity in parental human capital.

I then let schools choose quality sequentially. Without affirmative action, schools prefer privileged to

underprivileged group students because they are likelier to have higher grades and therefore more likely to go

to university. All students prefer schools with higher quality. Thus, early movers invest in high quality in a bid

to attract privileged group students, up to the point where the payoff is the same as that of investing in lower

quality and settling for an underprivileged group student. Late movers, having lost the opportunity to attract

privileged group students, invest in lower quality and educate underprivileged group students. Compared

to the baseline, the disparity between grade distributions, the extent of overrepresentation at university,
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and the difference between average realized human capital across groups are all exacerbated by privileged

students attending better quality schools. Affirmative action increases the probability of underprivileged

students attending university, which makes them more attractive to schools. Early mover schools therefore

compete less intensely to attract privileged group students and invest less in quality. However, the effect on

the quality choice of late movers is ambiguous – schools adjust quality so as to put more probability mass

in the grade distribution in the vicinity of the threshold grade, so as to increase the probability of their

students attending university as a result of affirmative action. Since late movers’ quality could also reduce,

inequality in average realized human capital across groups could increase.

Finally, I let students choose effort levels (while reverting to constant and homogeneous school quality

choice). The competition for university seats leads to optimal effort choices that are discontinuous in endow-

ment levels. For low endowment levels, students find that working extra hard to meet the threshold grade is

costly enough to offset the increase in human capital from attending university, and so choose not to attend

university and to exert low levels of effort. For high endowment levels, students find that moderate effort

levels comfortably put them above the threshold grade. For moderate endowment levels, students find that

the optimal effort level conditional on attending university would place them below the threshold, so they

choose high effort levels to meet the threshold. Unlike for those with low endowments, these students find

that the increase in human capital from attending university outweighs the costs of extra effort. Affirmative

action reduces the threshold grade for the underprivileged group and increases it for the privileged group.

Within the underprivileged group, some who earlier chose to not attend university now find it profitable

to exert more effort to meet the lower threshold grade. However, others who earlier worked hard to meet

the threshold grade now need to exert lower effort. Similarly, for the privileged group, some students no

longer find it worthwhile to work hard to meet the increased threshold and reduce their effort levels, while

others must raise effort levels to attend university. The effect on average effort is ambiguous for both groups,

leading to the possibility of increasing inequality in average realized human capital.

This paper adds to the theoretical literature on affirmative action in higher education1 by incorporating

strategic decision making by schools and students. It also contributes possible explanations for the empirical

literature that finds affirmative action policies have little to no effect on eventual earnings and inequality.2

2 Baseline Model

2.1 Model Set Up

Let there be a population of n students, a fraction λ of whom come from a historically privileged community

(denoted P ) and a fraction (1− λ) come from a historically underprivileged community (denoted U).

Students are endowed with ability a ∈ [0, ā] and parental capital p ∈ [0, p̄]. For i ∈ {P,U}, let Hi(a, p)

1 Durlauf (2008); De Fraja (2002); Rotthoff (2008); del Rey Canteli and Racionero (2008); Epple et al. (2008); Fryer Jr et al.
(2008).

2 Bertrand et al. (2010); Arcidiacono (2005).

2



be the joint distribution, Xi(a) the marginal distribution of ability, and Bi(p|a) the conditional distribution

of parental capital given ability.

Assumption 2.1. (i) XP (a) = XU (a) ∀a; (ii) BP (p|a) < BU (p|a) ∀a, p; and (iii) Xi(a) and Bi(p|a) are

continuous.

Thus, ability is distributed the same across groups, but P students are likely to are likely to have higher

parental capital for a given ability level. The law of total probability implies that the marginal distribution

of parental capital for the P group (strictly) first order stochastically dominates that of the U group. This

assumption reflects persisting inequalities in capital between historically privileged and disadvantaged groups.

Students study in schools, and earn grades according to the production function

g = g(a, p, q, e), (1)

where q ≥ 0 is school quality and e ≥ 0 is effort.

Assumption 2.2. (i) g(·, ·, ·, ·) is continuous and twice continuously differentiable; (ii) g is increasing in

all its arguments; (iii) all second order cross derivatives are positive; and (iv) g(0, ·, ·, ·) = g(·, 0, ·, ·) =

g(·, ·, 0, ·) = g(·, ·, ·, 0) = 0.

(i) is a simplifying assumption, (ii) implies higher inputs lead to higher outputs, (iii) implies inputs

are complementary, which is a common modeling assumption, and (iv) fixes levels and ensures grades are

non-negative for convenience. p entering the grades function in this way reflects traditional mechanisms

for the inter-generational transfer of human capital. Parents with more capital can improve their children’s

school outcomes by, for example, providing better home teaching, hiring better home tutors, providing better

infrastructure, etc.

Based on their grades, students compete for Ā < n university seats. College admissions follow a simple

threshold policy – the Ā students with the highest grades are admitted.

The payoff for students is their human capital at the end of this game. For those not admitted to univer-

sity, human capital is g. Those admitted to college accumulate human capital according to the production

function k(g).

Assumption 2.3. (i) k(·) is continuous and twice differentiable; and (ii) ∂k(g)
∂g ≥ 1 and k(g) ≥ g ∀g.

(ii) implies that a university education never reduces human capital, and students with higher grades

benefit at least as much as those with lower grades.3 However, this does not mean that students with

higher grades are ‘better able’ to take advantage of a university education since it is consistent with university

increasing human capital by a fixed proportion.4 The assumption is even consistent with a constant increase

in human capital.

3 Bertrand et al. (2010) reports that going to engineering college increased incomes of low-caste college seat gainers less than
for displaced high-caste students.

4 Data in Bertrand et al. (2010) support a proportionate increase of 40-70%.
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Since the primary motivation of the paper is to investigate the effects of strategic school quality and

student effort choice, to derive baseline results I assume these are both non-strategic.

Assumption 2.4. (i) q is non-stochastic and constant across all schools; and (ii) e is non-stochastic and

constant across all students.

2.2 Outcome without Affirmative Action

Since there is no strategic decision making by any agents in the baseline model, I do not need to analyze

any optimization decision. The outcome flows mechanically.

Lemma 2.1. The baseline outcome without affirmative action has the following characteristics.

(a) Grades for group i are distributed according to Fi(g) = Ea [Bi(P (a|g))] where P (a|g) is implicitly

defined by g = g(a, P (a|g), q, e).

(b) FP (g) < FU (g) ∀g.

(c) The threshold grade g∗ for university admissions is given implicitly by [(1−FP (g
∗))λ+(1−FU (g

∗))(1−

λ)]n = Ā.

(d) The P group is overrepresented in university.

(e) Average realized human capital is higher for the P group.

Proof. See Appendix.

Since grades are influenced by parental capital, and since the P group’s parental capital distribution

dominates that of the U group, grades for P students dominate those of U students as well. Under a

threshold admissions system, this translates into P students being overrepresented in university, in that

the proportion of university students made up of P students exceeds their share of the general population.

Since a higher proportion of P students go to university and since grades influence eventual human capital

attainment, P students’ distribution of eventual human capital dominates that of U students’, resulting in

a disparity in average human capital attainment across groups.

2.3 Imposing Affirmative Action

Definition 2.1 (Affirmative Action). Affirmative action is a policy that achieves equal representation, i.e.

the proportions of P and U students admitted to university must be the same.

Lemma 2.2. Compared to the outcome without affirmative action,

(a) Threshold grades rise for P students and fall for U students.5

(b) Average realized human capital rises for U students and falls for P students.

(c) The difference in average realized human capital for P and U students remains positive.

5 Bertrand et al. (2010) report threshold grades for engineering institutions covered in the study were 480/800 for upper
caste students and 182/800 for lower caste students.
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(d) Economy-wide average realized human capital weakly falls.6

Proof. See Appendix.

Affirmative action reduces P representation and increases U representation at university. This can only

be achieved by reducing the threshold grade for U students so that more are let in, and increasing it for

P students so that fewer are let in. This directly reduces average realized human capital for the P group

since a subset goes from attending to not attending university, and vice versa for the U group. However,

affirmative action does not eliminate inequality because even though similar proportions of P and U groups

go to university, the grades distribution for the P group still dominates that for the U group, the P students

who attend university have on average higher grades than their U group colleagues, and students with higher

grades gain at least as much from university as those with lower grades. Economy-wide average realized

human capital either stays the same or falls because the U students who gain access to university have lower

grades than the P students who lose access, and students with higher grades gain at least as much from

university as those with lower grades.

3 School Quality Choice

Proponents often argue that affirmative action is necessary to counterbalance differences in the quality of

schooling available to historically privileged and underprivileged groups. In this section, I allow schools to

choose quality and loosely recreate a stylized fact – privileged group students tend to attend higher quality

schools. I then analyze the effect of affirmative action policies on school quality choice, and the consequent

implications for inequality in realized human capital.

3.1 Model Set Up

Assumptions 2.1, 2.2, 2.3 and 2.4(ii) continue to hold. However, schools are now decision making agents.

Let there be n schools, each with the capacity to educate one student.7 Students (or their parents on their

behalf) also become decision making agents. The sequence of actions is as follows.

1. n students are born, with nature assigning each person into group P with probability λ and group U

with probability 1− λ.

2. Schools (indexed by j) choose publicly observable quality qj sequentially in a random sequence.8

3. Schools observe only each student’s group affiliation (not a or p) and make an offer to a student. If

the offer is rejected, the school makes another offer until the seat is filled.

4. Students choose which offer to accept.

6 Bertrand et al. (2010) conclude that affirmative action policies come at an absolute cost.
7 The analysis would be materially unchanged but more cumbersome with a smaller number of schools each with the capacity

to educate several students.
8 A version of this game with simultaneous entry and quality choice does not have a pure strategy equilibrium, but the more

cumbersome mixed strategy equilibrium achieves materially the same outcome.
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5. Students undergo schooling and possibly university, and receive payoffs (realized human capital).

Assumption 3.1. All schools are a priori symmetric with the following characteristics

(i) Costs of increasing quality are C(q) with C(0) = 0, C ′(q) > 0 and C ′′(q) > 0

(ii) The payoff function is S(q|i, g∗(i)) = E [pupil’s realized human capital |i, g∗(i)] − C(q), where g∗(i)

returns the threshold grade for group i

(iii) {q : S(q|i, g∗(i)) ≥ 0} ≠ ϕ

(iv) ∃ q̄i such that S(q|i, g∗(i)) < 0 ∀q ≥ q̄i for i ∈ {P, u}

(ii) postulates that schools look to the expected realized human capital of their pupils. This is motivated

by schools looking to enhance their reputation, which can result in higher fees or donations from alumni.

(iii) and (iv) together ensure that schools will want to operate.

3.2 Outcome without Affirmative Action

Lemma 3.1. In equilibrium

(a) Grades for group i are distributed according to Fi(g|q) = Ea [Bi(P (a|g, q))] where P (a; g, q) is implicitly

defined by g = g(a, P (a; g, q), q, e).

(b) FP (g|q) < FU (g|q) ∀g.

(c) Fi(g|q′′) ≤ Fi(g|q′) when q′′ ≥ q′.

(d) The first λn schools choose ‘good’ quality qG = max{q : S(q|P, g∗) = maxq S(q|U, g∗)}.

(e) The remaining schools choose ‘bad’ quality qB ∈ argmaxq S(q|U, g∗) < qG.

(f) P students attend good quality schools and U students attend bad quality schools.

(g) P students are overrepresented at university.

(h) Average realized human capital is higher for the P group.

Proof. See Appendix.

Analogous to the baseline model, for a given school quality level, the grades distribution for P students

(strictly) dominates that of U students because parental capital influences grades. Moreover, since school

quality influences grades, the grades distribution associated with a higher quality school dominates that

associated with a lower quality school for a student from a given group.

The Appendix shows that the representative school’s payoff can be written as

S(q|i, g∗) = EFi|q [g] +

∫ ḡ

g∗
(k(g)− g)dFi(g|q)− C(q) (2)

S(q|i, g∗) is continuous since all its constituent functions and probability distributions are continuous. More-

over, S(0|i, g∗) = 0 since g(a, p, 0, e) = 0; there is a set of values for which it is positive, and it eventually

turns negative. Also, S(q|P, g∗) > S(q|U, g∗), i.e. for the same quality chosen, educating a P student will

give a higher payoff than educating a U student. This follows from P students’ grade distribution dominating
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that of U students, and P students being more likely to go to university. Figure 1 depicts a configuration of

S(q|P, g∗) and S(q|U, g∗) curves that obey these conditions. qB is defined as the quality that maximizes the

payoff from educating a U student for sure, and qG as the highest quality that gives the same payoff from

educating a P student as qB gives from educating a U student.

0 𝑞
𝑞𝐵 𝑞𝐺

𝑆(𝑞|𝑖, 𝑔)

𝑆(𝑞|𝑃, 𝑔∗)

𝑆(𝑞|𝑈, 𝑔∗)

Figure 1: S(q|P, g∗) and S(q|U, g∗)

Consider the best response strategies for schools and students in the game defined earlier. Students

prefer to attend better quality schools because it increases their realized human capital. Moreover, schools

associate P students with a higher payoff for any quality choice. The Appendix shows that the best response

strategies for schools are as follows.

� For the first λn schools, choose qG

� For school k within the (λn+1)-th to (n− 1)-th schools, if at least λn schools have chosen at least qG,

choose qB ; if fewer than λn schools have chosen at least qG, if the minimum of the top λn− k qualities

chosen so far (defined as q′) is less than qG choose argmaxq∈(q′,qG) S(q|P, g∗), else choose qG

� for the last school, if the minimum of of the top λn − 1 qualities so far (defined as q′) is below qG,

choose argmaxq∈(q′,qG) S(q|P, g∗), else choose qB

The outcomes described in Lemma 3.1(d)-(f) are part of a subgame perfect equilibrium because there

are no profitable deviations. For any of the first λn schools choosing q > qG will attract a P student for sure

but lead to a lower payoff; and choosing q < qG will attract a U student for sure (since a later school could

replace it in the top λn) and lead to a weakly lower payoff. For any of the remaining schools, attracting a

P student would require choosing q ≥ qG, which leads to a weakly lower payoff than attracting a U student
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with quality qB ; and choosing any q < qG other than qB will attract a U student for sure and lead to a lower

payoff. Students prefer good quality schools over bad quality schools, and since each school makes offers first

to P students, they are distributed among good quality schools, leaving bad quality schools to educate U

students.

P students’ overrepresentation at university is even starker in this model compared to the baseline. Their

grade distribution dominates that of U students not only because of the difference in parental capital, but

because they receive a better education at school. This overrepresentation contributes to a higher average

realized human capital for the P group.

3.3 Imposing Affirmative Action

Assumption 3.2. g∗P > g∗ > g∗U

This assumption rules out counterintuitive equilibria that are not already ruled out given the limited

functional form and distributional assumptions so far.

Lemma 3.2. Compared to the outcome without affirmative action,

(a) The first λn schools choose ‘good’ quality q′G = max{q : S(q|P, g∗P ) = maxq S(q|U, g∗U )}

(b) The remaining schools choose ‘bad’ quality q′B ∈ argmaxq S(q|U, g∗U ) < q′G

(c) P students attend good quality schools and U students attend bad quality schools.

(d) Good quality schools lower their quality but the effect on the quality of bad quality schools is ambiguous.

(e) The effect on the difference in average realized human capital is ambiguous, but it remains positive.

(f) The effect on economy-wide average realized human capital is ambiguous.

Proof. See Appendix.

Since the threshold grade falls for U students and rises for P students, at a given q, the expected payoff for

schools rises from educating a U student and falls from educating a P student. Consequently, S(q|U, g∗U ) >

S(q|U, g∗) and S(q|P, g∗P ) < S(q|P, g∗). However, the Appendix shows that S(q|P, g∗P ) > S(q|U, g∗U ), i.e.

schools still prefer P students to U students at every q. This is because even though the probability of a

student going to university is now equal across groups, P students’ grade distribution still dominates that

for U students for a given q and therefore P students will likely have a higher level of realized human capital.

Figure 2 shows a possible configuration of how payoffs for schools change.

The best response strategies and the resulting equilibrium do not qualitatively change. Students still

prefer better quality schools to worse ones, and schools still prefer P students to U students. Since the

curve for P students is still above that for U students, the first λn schools still find it best to choose the

highest quality that will attract a P student that also gives at least as much payoff the best possible payoff

from educating a U student, and the remaining schools choose the quality that maximizes the payoff from

educating a U student. P Students still attend high quality schools and U students still attend low quality

schools.

8



0 𝑞
𝑞𝐵 𝑞𝐺

𝑆(𝑞|𝑖, 𝑔)

𝑆(𝑞|𝑃, 𝑔∗)

𝑆(𝑞|𝑈, 𝑔∗)

𝑞𝐵
′ 𝑞𝐺

′

𝑆(𝑞|𝑈, 𝑔𝑈
∗ )

𝑆(𝑞|𝑃, 𝑔𝑃
∗ )

Figure 2: Affirmative Action’s Effect on School Quality Choice

q′G < qG unambiguously for two reasons. First, since the probability of P students going to university

falls, even if the attractiveness of educating a U as an alternative does not change, there is less incentive to

invest in quality. Second, the alternative of educating a U student becomes more attractive, so schools are

even less willing to invest to attract a P student.

The change in the quality of low quality schools is ambiguous. q′B is the quality level that maximizes

S(q|U, g∗U ), so whether it is more or less than qB depends on how the objective function shifts as the

threshold grade changes. The Appendix applies a monotone comparative static result from Milgrom and

Shannon (1994) and shows that

∂fU (g|q)
∂q

≤ 0 ⇒ q′B ≤ qB &
∂fU (g|q)

∂q
≥ 0 ⇒ q′B ≥ qB , (3)

or that if fU (g|q) is decreasing in q in the vicinity of g∗ then quality falls and vice versa.

Figure 3 helps understand the intuition behind this result. Consider a single peaked density function

fU (g|q) at some quality q′. If quality increased to some q′′, then by Lemma 3.1(c) the new distribution

will stochastically dominate the old one. In the diagram, the new density is depicted by a dashed line. If

the threshold grade is at g1, an increase in quality will increase the probability mass in the vicinity of the

threshold grade. In this scenario, a reduction in threshold grade would increase the probability of a student

getting into university much faster. However, if the threshold is at a point (like g0) where an increase in

quality reduces probability mass, then increasing quality reduces the effectiveness of a falling threshold in
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0 𝑔

𝑓𝑈(𝑔|𝑞)

𝑓𝑈 𝑔 𝑞′ 𝑓𝑈 𝑔 𝑞′′

𝜕𝑓𝑈 𝑔0 𝑞

𝜕𝑞
< 0

𝜕𝑓𝑈 𝑔1 𝑞

𝜕𝑞
> 0

Figure 3: The Effect of fU (g|q) on School Quality Choice

increasing the probability of going to university. The incentive at this grade is to reduce quality to put more

probability mass in the vicinity of the threshold, so as to take maximum advantage of the externally imposed

reduction in threshold. Thus, schools adjust quality to put more people in the vicinity of the threshold, so

as to better exploit the effect a falling threshold has on increasing the prospects that the student goes to

university.

Average realized human capital for the P group remains higher than for the U group because even

though they attend university at similar rates, the distribution of P student’s parental human capital still

dominates that of U students, and P students continue to attend better quality schools. Since bad quality

schools might lower quality, the effect of affirmative action on the average realized human capital for the

U group is ambiguous even though their propensity of attending university increases. This leads to the

following proposition.

Proposition 3.1. Affirmative action may cause schools educating U students to reduce quality, which might

in turn reduce their average realized human capital and might increase the difference between average realized

human capital across groups.

4 Student Effort Choice

Opponents of affirmative action often criticize members of the beneficiary group as slackers who take ad-

vantage of society’s benevolence. In this section I abstract from school quality choice but allow students
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to choose effort levels. I find that competition for college seats leads to some students from both groups

working hard. I then analyze how affirmative action changes the relative numbers of hard workers in both

groups, and the consequent implications for inequality in realized human capital.

4.1 Model Set Up

Assumptions 2.1, 2.2, 2.3 and 2.4(i) continue to hold. Students are now decision making agents.

Assumption 4.1. The following apply.

(i) a and p enter g(a, p, q, e) in a way such that g(a, p, q, e) = g(τ(a, p), q, e) where τ(a, p) is increasing in

both arguments.

(ii) Students maximize their realized human capital by choosing effort.

(iii) Effort is costly, with costs of effort being continuous, twice differentiable and homogeneous across

students at C(e), with C(0) = 0, C ′(e) > 0 and C ′′(e) > max

{
∂2g
∂e2 ,

∂k
∂g

∂2g
∂e2 +

(
∂g
∂e

)2
∂2k
∂g2

}
.

(iv) ∂2k
∂g2 ≥ −

(
∂g
∂e

∂g
∂τ

)−1
∂k
∂g

∂2g
∂τ∂e .

(i) is a separability assumption on g(a, p, q, e) that allows the condensing of variation in individual

characteristics into one ‘educability’ variable. For instance, if g(a, p, q, e) = apqe, then τ(a, p) = ap and

g(τ, q, e) = τqe. This assumption is made for convenience to facilitate two-dimensional graphical analysis.

The last condition in (iii) ensures an interior solution for effort. (iv) specifies that k(g) is not too concave,

which significantly simplifies the analysis below.

The representative student’s payoff is thus defined by

S(e|τ) =

g(τ, q, e)− C(e) if student does not attend university

k(g(τ, q, e))− C(e) if student attends university

(4)

Since students know τ and q is a known constant, students can calculate their realized human capital

precisely.

Lemma 4.1. The following hold in relation to τ .

(a) g(τ, q, e) is increasing in τ and all cross derivatives are positive.

(b) τ for group i is distributed according to Fi(τ) = Ea [Bi(P (a|τ))] where P (a|τ) is implicitly defined by

τ = τ(a, P (τ |a)).

(c) FP (τ) < FU (τ) ∀τ .

Proof. See Appendix.

4.2 Outcome without Affirmative Action

Lemma 4.2. In equilibrium
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(a) The optimal effort schedule e(τ) satisfies

∂g(τ, q, e(τ))

∂e
= C ′(e(τ)) when τ < τ∗

g(τ, q, e(τ)) = g(τ∗, q, e(τ∗)) ≡ g∗ when τ∗ ≤ τ ≤ τ0

∂k

∂g

∂g(τ, q, e(τ))

∂e
= C ′(e(τ)) when τ > τ0

(5)

where τ∗ is given implicitly by [(1 − FP (τ
∗))λ + (1 − FU (τ

∗))(1 − λ)]n = Ā and τ0 is given implicitly

by g(τ0, q, e)− g∗ = ∂k
∂g

∂g(τ0,q,e)
∂e − C ′(e) = 0

(b) P students are overrepresented at university.

(c) Average realized human capital is higher for the P group.

Proof. See Appendix.

This is a simultaneous move game – students choose effort levels knowing that everyone’s choice affects

everyone else’s payoff via the threshold grade. However, the standard solution method is not feasible because

payoffs are discontinuous and the point of discontinuity depends on the strategic choice variable. I therefore

solve for equilibrium through the following novel solution method: (i) given a threshold grade g∗ I find the

optimal effort as a function of τ conditional on not attending university, (ii) I do the same conditional on

attending university, (iii) I compare payoffs associated with both schedules to find the one which gives a

higher payoff for each τ , and (iv) I establish the value of g∗ consistent with all university seats being filled.

This method separates the two decisions of whether to go to university, and the optimal choice of effort

conditional on the first choice.

Figure 4 in the e − τ space depicts steps (i) and (ii) above. The green GG line is the locus of e − τ

combinations that achieve the threshold grade g∗. It slopes downward since g(τ, q, e) is increasing in all its

arguments. Below and to the left of this line, the student does not achieve the threshold grade and does

not attend university. At all other points, the student achieves or exceeds the threshold grade and attends

university. The orange 0N line corresponds to the first order condition associated with maximizing realized

human capital conditional on not attending university. It is upward sloping since g(τ, q, e) has positive cross

derivatives, so a higher τ means that the marginal returns to effort are higher. Similarly, the blue 0Y line

depicts the effort level that maximizes realized human capital conditional on attending university, and is

positively sloped. Moreover, 0Y lies above 0N because attending university increases human capital, so the

marginal gain from increasing effort is higher.

Consider first the optimal effort schedule conditional on not attending university eN (τ). This restricts

the student to below GG . At levels of τ up to τ1, 0N gives the optimal choice. After τ1, effort levels

consistent with 0N would put the student in university, so to ensure not attending university, effort levels

must follow GG. Thus, eN (τ) is the lower envelope of 0N and GG. Similarly, consider the optimal effort

schedule conditional on attending university eY (τ). The student must be restricted to GG or above. For
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Figure 4: Optimal Effort Conditional on Attending and Not Attending University

low levels of τ up to τ0 effort levels consistent with 0Y would not achieve the threshold grade, so effort levels

must follow GG to ensure attending university. Above τ0, 0Y gives optimal effort. eY (τ) is thus the upper

envelope of GG and 0Y .

Figure 5 depicts step (iii). SN (τ) and SY (τ) show the payoffs corresponding to eN (τ) and eY (τ) respec-

tively. The Appendix shows that both are continuous and positively sloped. SN (0) = 0 since the optimal

effort is 0, but limτ→0SY (τ) = −∞ since an arbitrarily low τ will require an arbitrarily high e to make

the threshold grade, resulting in arbitrarily high costs. Moreover, SN (τ0) < SY (τ0). Unconstrained optimal

effort levels conditional on attending university (depicted by 0Y in Figure 4) will always result in a higher

payoff than the unconstrained optimal effort level conditional on not attending university (depicted by 0N)

because k(g) > g. eN (τ0) corresponds to a constrained effort level, which results in a lower payoff than

the unconstrained effort level, which in turn is lower than the payoff from eY (τ0) that corresponds to the

unconstrained optimal effort level. Thus, SN (τ) and SY (τ) must cross between 0 and τ0. The Appendix

shows they must cross only once. Denote this point τ∗. The highest payoff S(τ) is given by not attending

university up to τ∗ and attending university thereafter.

Figure 6 shows the resulting optimal effort schedule e(τ). Intuitively, for students with extremely low

levels of τ (below τ∗) it takes too much effort to meet the threshold grade and the disutility of putting in

that effort outweighs the extra returns. So they choose to slack and not attend university. Students with

extremely high levels of τ (over τ0) meet the threshold simply by maximizing their realized human capital.

Students with moderate τ (between τ∗ and τ0) need to exert extra effort to meet the threshold grade, but
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Figure 5: Comparing Payoffs from Attending and Not Attending University

the extra benefits of attending university outweigh the extra costs.

Step (iv) completes equilibrium determination. All students with τ ≥ τ∗ attend university, so we must

have [(1 − FP (τ
∗))λ + (1 − FU (τ

∗))(1 − λ)]n = Ā. Since τ∗ is determined by SN (τ∗) = SY (τ
∗), and since

SY (τ) in the relevant range depends on g∗, we only need to find a g∗ corresponding to the τ∗ that exactly

clears college seats.

Since parental human capital enters τ , the τ distribution for P students dominates that for U students,

resulting in overrepresentation at university. Average realized human capital is higher for the P group owing

both to the overrepresentation at university and the higher average τ endowment.

4.3 Imposing Affirmative Action

Lemma 4.3. Compared to the outcome with no affirmative action,

(a) τ0, τ1 and τ∗ increase if the threshold grade increases and vice versa.

(b) The threshold grade increases for P students and reduces for U students.

(c) In both groups, some students increase effort while others reduce effort. The effect on average effort is

ambiguous.

(d) The effect on average realized human capital for both groups, and the difference between groups, is

ambiguous.

Proof. See Appendix.
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One can solve for equilibrium as earlier. In steps (i) and (ii), the change in threshold grade only affects

GG. Suppose the threshold grade changes to g∗i > g∗. Then Figure 7 depicts the consequent changes.

GG shifts out and to the right to GiGi. Since the threshold grade is higher, for any given τ meeting the

threshold grade requires more effort, and vice versa. Since GiGi is negatively sloped, it intersects 0N and 0Y

to the right of where GG intersects them, resulting in τ0i > τ0 and τ1i > τ1. Moreover, the effort required

conditional on attending university rises up to τ0i and that conditional on not attending university rises

beyond τ1. The analysis is reversed for g∗i < g∗, with τ0i < τ0, τ1i < τ1, effort conditional on attending

university falling up to τ0 and that conditional on not attending falling beyond τ1i.

Figure 8 carries forward the analysis for g∗i > g∗ to comparing payoffs and finding τ∗. Since effort

conditional on attending university rises up to τ∗i , it moves further away from the unconstrained optimum

leading to a fall in SY (τ) in this range. Since effort conditional on not attending university falls beyond τ1, it

moves closer to or exactly to the unconstrained optimum, leading to a rise in SN (τ) in this range. Crucially,

SN (τ) does nto change up to τ1. This means the intersection point τ∗i > τ∗. The analysis is reversed for

g∗i < g∗, with SY (τ) rising up to τ0 and τ∗i < τ∗.

Since g∗i > g∗ ⇒ τ∗i > τ∗ (and vice versa), and since affirmative action requires τ∗P > τ∗ > τ∗U to achieve

equal representation, this necessarily required g∗P > g∗ > g∗U . Figure 9 shows the effect of an increase in

threshold grade for P students on optimal effort. Between τ∗ and τ∗P effort falls. This corresponds to the

set of P students who just made it to university by exerting extra effort without affirmative action, but now

no longer find it worthwhile to exert even more effort to meet the increased threshold. They settle for not

15



0
𝜏

𝑒

𝑁

𝑌

𝑒𝑌 𝜏

𝑒𝑁 𝜏

𝐺

𝐺

𝜏0 𝜏1

𝑒𝑁𝑖 𝜏

𝑒𝑌𝑖 𝜏

𝜏0𝑖 𝜏1𝑖

𝐺𝑖

𝐺𝑖

Figure 7: The Effect of Increasing g∗ on τ0 and τ1
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attending university reduce their effort level to the associated unconstrained optimum. Conversely, between

τ∗P and τ0P effort rises. Students between τ∗P and τ0 needed to work extra hard to attain the threshold grade

without affirmative action, and while they now need to put in even more effort, the gains from attending

university are still greater than the extra costs. Students between τ0 and τ0P , who did not need to work extra

hard to achieve the threshold grade without affirmative action, suddenly find they need to do so now, but

putting in the extra work and attending university is still preferable to not attending university. Thus, the

effect on average effort levels is ambiguous, and depends on the density of students in the relevant intervals.
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Figure 9: The Effect of Increasing g∗ on Optimal Effort for P students

The analysis is reversed for U students, for whom g∗U < g∗. Effort rises for students between τ∗U and τ∗.

These are students who earlier did not find it worthwhile to exert extra effort to achieve the threshold grade,

but find it worthwhile after the threshold grade falls. Effort falls for students between τ∗ and τ0. These

students were earlier working extra hard to meet the threshold grade, but now need to work less hard to

meet the lower threshold grade. Students between τ0U and τ0 are able to shift to their unconstrained effort

level. The effect on average effort is, again, ambiguous.

Since the effect on effort is ambiguous for both groups, the effect on average human capital for either

group, and the difference between group averages, is ambiguous. This leads to the following proposition.

Proposition 4.1. Affirmative action may cause average effort to rise for P students and fall for U students,

which in turn might increase the difference between average realized human capital across groups.

Figure 10 illustrates such a situation. The increase in effort for the U group in the range [τ∗U , τ
∗) will

likely be outweighed by the decline in the range [τ∗, τ0) to an extent that outweighs the effect of increased
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representation. Similarly, for P students, the reduction in effort in the range [τ∗, τ∗P ) will likely be outweighed

by an increase in effort in the range [τ∗P , τ0P ) to an extent that outweighs the effect of reduced representation.

0 𝑔
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Figure 10: An Illustration of Increasing Inequality

5 Conclusion

This paper examines the effectiveness of affirmative action policies in higher education in reducing inter-

group inequality when strategic responses by schools and students are taken into account. Students in the

model are endowed with ability and parental human capital. The privileged group has a parental human

capital distribution that dominates that of the underprivileged group, while ability is distributed similarly

across groups. Students undergo schooling and may attend university if they achieve a threshold grade or

greater. Both school and university raise realized human capital.

When school quality and student effort are fixed and homogeneous, privileged students perform better

at school on account of having richer parents on average, and are overrepresented at university. Affirmative

action targeted at achieving equal rates of representation across groups causes threshold grades to fall for

the underprivileged group and rise for the privileged group. While the difference in average realized human

capital across groups falls, it remains positive because privileged students still benefit from having richer

parents on average.

When schools are able to choose quality sequentially, they compete to attract privileged group students.

Early movers invest in high quality and educate privileged students while late movers invest in low quality
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and educate underprivileged group students. The disparity between privileged and underprivileged group

average realized human capital is even wider than the baseline case because privileged students have higher

parental capital on average, go to better quality schools and are overrepresented at university. Affirmative

action makes privileged group students less attractive and underprivileged group students more attractive.

This reduces the intensity of competition for privileged group students, leading to lower investment in quality

by early movers, who still educate privileged group students. Investment in quality by late movers may also

reduce if doing so puts a high density of students in the vicinity of the threshold grade, so that the policy

pushes as many students into university as possible. Inequality between groups might increase as a result.

When students are able to choose effort levels, three groups emerge. Those with low levels of endowment

choose to exert low effort levels and not attend university. Those with high levels of endowment attend

university but exert moderate levels of effort since they comfortably exceed the threshold grade. Those

with moderate levels of endowment would like to exert moderate levels of effort if they were guaranteed a

place in university, but competition from other students means they must exert extra effort to achieve the

threshold grade. Affirmative action causes effort to rise for some members and fall for other members of

both groups. For the privileged group, a rise in the threshold grade means that it is no longer feasible to

compete to attend university for some students with moderate endowment, who reduce their effort levels

and choose not to attend university. However, others with moderate endowment increase their effort level

in order to meet the higher threshold grade. For the underprivileged group, the fall in the threshold grade

makes it worthwhile for some students with moderate endowment to work extra hard to meet the threshold

grade and attend university where they earlier would not. However, the fall in threshold grade requires lower

effort from those with moderate endowment who were earlier exerting extra to achieve the threshold. The

net effect on average effort levels and average realized human capital is ambiguous for both groups, and

inequality may increase as a result.

This paper shows the importance of considering strategic decision making by different actors when eval-

uating the effectiveness of affirmative action policies. It suggests possible reasons to investigate when affir-

mative action policies do not have the desired effect.

Extensions of this paper might include numerical simulations to understand dynamic effects when af-

firmative action policies are in place across generations. Empirical work might also use these theoretical

models as bases for structural econometric models to evaluate the extent of strategic reactions affirmative

action policies.
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A Appendix

Proof of Lemma 2.1.

(a) With q and e fixed, equation 1 implicitly defines p as a function of a parametrized by g. Call this

function P (a|g). Since grades increase in each argument (Assumption 2.2(ii)), if a increased then p

would have to fall to achieve the same g. Hence P (a|g) is a decreasing function for a fixed g. Moreover,

since a, p ≥ 0, this function exists in the positive quadrant. Further, curves corresponding to higher

values of g lie strictly above and to the right of those corresponding to lower values.

The probability that a grade is below g̃ is then the probability mass of Hi(a, p) that lies to the left and

below P (a|g̃) plotted in the p− a space:

Fi(g̃) =

∫
a

∫ P (a|g̃)

0

hi(a, p)dpda

=

∫
a

∫ P (a|g̃)

0

xi(a)bi(p|a)dpda

=

∫
a

xi(a)

∫ P (a|g̃)

0

bi(p|a)dpda

=

∫
a

xi(a)Bi(P (a|g̃))da

= Ea [Bi(P (a|g̃))]

(b) By Assumption 2.1(ii), BP (P (a|g)) < BU (P (a|g)). Since the marginal distribution of a is the same

across groups (Assumption 2.1(i)), Ea [BP (P (a|g))] < Ea [BU (P (a|g))].

(c) Follows from equating the sum of the numbers of students of both groups who get grades above g∗

with the number of university seats Ā.

(d) From (b) above, 1− FP (g
∗) ≥ 1− FU (g

∗).

(e) Let ḡ = g(ā, p̄, q, e) be the highest attainable grade. For group i the average human capital given a

threshold grade g∗ is

k̃i =

∫ g∗

0

gdFi(g)+

∫ ḡ

g∗
k(g)dFi(g) =

∫ ḡ

0

gdFi(g)+

∫ ḡ

g∗
(k(g)− g)dFi(g) = EFi

[g] +

∫ ḡ

g∗
(k(g)− g)dFi(g)

Since FP (g) ≤ FU (g), EFP
[g] ≥ EFU

[g]. Integrating the second term by parts,

∫ ḡ

g∗
(k(g)− g)dFi(g) = k(ḡ)− ḡ − (k(g∗)− g∗)Fi(g

∗)−
∫

(k′(g)− 1)Fi(g)dg

The result follows from Assumption 2.3.
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Proof of Lemma 2.2.

(a) Equal representation requires separate threshold grades for each group g∗P and g∗U which satisfy the

following conditions

1− FP (g
∗
P ) = 1− FU (g

∗
U )

[(1− FP (g
∗
P ))λ+ (1− FU (g

∗
U ))(1− λ)]n = Ā

Without affirmative action, from Lemma 2.1(b), 1−FP (g
∗) ≥ 1−FU (g

∗). Moving from Lemma 2.1(c)

to the first equation above while obeying the second equation requires 1 − FP (g
∗) ≥ 1 − FP (g

∗
P ) and

1− FU (g
∗) ≤ 1− FU (g

∗
U ). This requires g

∗
U ≤ g∗ ≤ g∗P .

(b) Average realized human capital for group i is given by

k̃AA
i = EFi

[g] +

∫ ḡ

g∗
i

(k(g)− g)dFi(g)

Consequently,

k̃AA
P − k̃P = −

∫ g∗
P

g∗
(k(g)− g)dFP (g) ≤ 0

k̃AA
U − k̃U =

∫ g∗

g∗
U

(k(g)− g)dFU (g) ≥ 0

(c) The difference between average realized human capital for the P and U groups is

k̃AA
P − k̃AA

U = EFP
[g]− EFU

[g]︸ ︷︷ ︸
M

+

[∫ ḡ

g∗
P

(k(g)− g)dFP (g)−
∫ ḡ

g∗
U

(k(g)− g)dFU (g)

]
︸ ︷︷ ︸

N

M ≥ 0 by Lemma 2.1(b). Integrating N by parts and using FP (g
∗
P ) = FU (g

∗
U ),

N =− FU (g
∗
U )[(k(g

∗
P )− g∗P )− (k(g∗U )− g∗U )]︸ ︷︷ ︸

N1

+

[∫ ḡ

g∗
U

(k′(g)− 1)FU (g)dg −
∫ ḡ

g∗
P

(k′(g)− 1)FP (g)dg

]
︸ ︷︷ ︸

N2
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By Lemma 2.1(b), since FU (g) is weakly increasing, and by Assumption 2.3(ii),

N2 >

∫ ḡ

g∗
U

(k′(g)− 1)FU (g)dg −
∫ ḡ

g∗
P

(k′(g)− 1)FU (g)dg

=

∫ g∗
P

g∗
U

(k′(g)− 1)FU (g)dg

≥ FU (g
∗
U )

∫ g∗
P

g∗
U

(k′(g)− 1)dg

= [k(g)− g]
g∗
P

g∗
U

= N1

Hence, N = −N1 +N2 > −N1 +N1 = 0

(d) Economy-wide average realized human capital without affirmative action is k̃ = λk̃P + (1− λ)k̃U , and

k̃AA is defined analogously for when affirmative action is imposed. Their difference is

k̃AA − k̃ =

∫ g∗

g∗
U

(1− λ)(k(g)− g)dFU (g)−
∫ g∗

P

g∗
λ(k(g)− g)dFP (g)

Affirmative action takes away university seats from P students with grades in the range [g∗, g∗P ] and

gives them to U students with grades in the range [g∗U , g
∗]. The size of both these groups must be the

same, therefore

(1− λ)n

∫ g∗

g∗
U

dFU (g) = λn

∫ g∗
P

g∗
dFP (g)

⇒ (k(g∗)− g∗)

∫ g∗

g∗
U

(1− λ)dFU (g) = (k(g∗)− g∗)

∫ g∗
P

g∗
λdFP (g)

Since k(g)−g is weakly increasing in g by Assumption 2.3(ii), (k(g∗)−g∗)
∫ g∗

P

g∗ λdFP (g) ≤
∫ g∗

P

g∗ λ(k(g)−

g)dFP (g) and (k(g∗)−g∗)
∫ g∗

g∗
U
(1−λ)dFU (g) ≥

∫ g∗

g∗
U
(1−λ)(k(g)−g)dFU (g). Applying this to the above,

∫ g∗

g∗
U

(1− λ)(k(g)− g)dFU (g) ≤
∫ g∗

P

g∗
λ(k(g)− g)dFP (g)

⇒ 0 ≤
∫ g∗

P

g∗
λ(k(g)− g)dFP (g)−

∫ g∗

g∗
U

(1− λ)(k(g)− g)dFU (g) = k̃AA − k̃

with equality when k′(g) = 1.

Proof of Lemma 3.1. Parts (a) and (b) are analogous to the proofs of Lemma 2.1(a) and (b), with the

addition of p also being parametrized by q since q is now stochastic. For part (c), applying Assumption
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2.2(ii), an increase in q requires a decrease in p to achieve the same g. Hence q′′ ≥ q′ ⇒ P (a|g, q′′) ≤

P (a|g, q′) ⇒ Fi(a|g, q′′) ≤ Fi(a|g, q′), where the last step uses Lemma 3.1(a).

For parts (d)-(f), I first find best response strategies using backwards induction relying on the Subgame

Perfect Equilibrium concept.

Students’ acceptance of offers. Students know (a, p) and e is constant, so their expected payoff

is θ(q) = Prob(g(a, p, q, e) < g∗)g(a, p, q, e) + Prob(g(a, p, q, e) ≥ g∗)k(g(a, p, q, e)). Increasing q increases

both g(a, p, q, e) and k(g(a, p, q, e)), and shifts probability towards k(g(a, p, q, e)), all of which increase θ(q).

Hence, students prefer higher quality schools but are indifferent between schools of the same quality.

Schools’ offers. A schools’ payoff is given by

S(q|i, g∗) = Prob(g ≥ g∗|i)E [k(g)|i, g ≥ g∗] + Prob(g < g∗|i)E [g|i, g < g∗]− C(q)

= (1− Fi(g
∗|q))

∫ ḡ

g∗ k(g)dFi(g|q)
1− Fi(g∗|q)

+ Fi(g
∗|q)

∫ g∗

0
gdFi(g|q)

Fi(g∗|q)
− C(q)

= EFi|q [g] +

∫ ḡ

g∗
(k(g)− g)dFi(g|q)− C(q)

Following the method of the proof of Lemma 2.1(e), integrating the second term by parts and applying

Lemma 3.1(c) gives S(q|P, g∗) > S(q|U, g∗). Hence schools prefer P students to U students but are indifferent

between students of the same group.

Schools’ quality choice. Since all schools will make offers to P students first, and since P students

prefer higher quality to lower quality schools, P students will be distributed among the λn highest quality

schools. Hence, to attract a P student a school needs to be within the top λn quality schools.

Note that S(q|i, g∗) is continuous since g(a, p, q, e), k(g), Xi(a) and Bi(p|a) are all continuous and

S(0|i, g∗) = 0 since g(a, p, 0, e) = 0 (Assumption 2.2(i), (iv)). By Assumption 3.1(iii)-(iv) argmaxq S(q|i, g∗) ̸=

ϕ and S(qB |U, g∗) > 0. qG > qB since S(q|P, g∗) > S(q|U, g∗).

Consider the n-th school. There are two possibilities:

1. At least λn schools have chosen quality at least qG. Choosing q > qG will attract a P student for

sure but S(q|P, g∗, q > qG) < maxq S(q|U, g∗). Choosing q = qG will attract a P student with some

probability and give less expected payoff than maxq S(q|U, g∗). Choosing q < qG will attract a U

student for sure, and in this range choosing qB gives the highest payoff.

2. Fewer than λn schools have chosen quality at least qG. Let q′ be the minimum of the highest λn

qualities chosen previously. {q ∈ (q′, qG] : S(q|P, g∗) ≥ S(qG|P, g∗)} ̸= ϕ since maxq S(q|P, g∗) >

maxq S(q|U, g∗) = S(qG|P, g∗) and S(q|P, g∗) is continuous. Choosing argmaxq∈(q′,qG) S(q|P, g∗) would

attract a P student for sure and give payoff ≥ S(qG|P, g∗) . As earlier, choosing q < q′ would attract

a U student for sure which would give at most maxq S(q|U, g∗) = S(qG|P, g∗) and choosing q > qG

would result in a lower payoff than choosing qB .

Consider the (n− 1)-th school. There are three possibilities.
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1. At least λn schools have chosen quality at least qG. As above, it should choose qB .

2. Fewer than λn schools have chosen quality at least qG. Let q′ be the minimum of the top λn − 1

qualities chosen so far.

(a) q′ < qG. Choosing argmaxq∈(q′,qG) S(q|P, g∗) would attract a P student for sure since even if

the subsequent school chose qG it would still be in the top λn. Moreover, it would get a payoff

≥ S(qG|P, g∗).

(b) q′ = qG. Choosing qG would ensure that it would be a part of the top λn schools and attract a P

student for sure since the subsequent school would choose qB .

The analysis is analogous for the (n − 2)-th school up to the (1 − λ)n-th school. The best response of

representative school k within this group can be summarized as: if at least λn schools have chosen at least

qG, choose qB ; if fewer than λn schools have chosen at least qG, then if the minimum of the top λn − k

qualities so far is less than qG choose argmaxq∈(q′,qG) S(q|P, g∗), else choose qG.

For the λn-th and previous schools, the only way to ensure being in the top λn schools eventually is to

choose qG. Any q < qG would allow subsequent schools to choose higher quality and attract P students, and

any q > qG gives a lower payoff than qG.

All the best responses taken together imply the results in (d)-(f).

From parts (b) and (c) above, 1− FP (g
∗|qG) > 1− FU (g

∗|qG) ≥ 1− FU (g
∗|qB), proving (g).

Analogous to the baseline model, average human capital for each group is given by

k̃P = EFP |qG [g] +

∫ ḡ

g∗
(k(g)− g)dFP (g|qG)

k̃U = EFU |qB [g] +

∫ ḡ

g∗
(k(g)− g)dFU (g|qB)

Integrating by parts and applying (b) and (c) proves (h).

Proof of Lemma 3.2. To compute the new equilibrium consider how best response strategies change.

Students still prefer higher quality over lower quality schools. The proof is the same as in that for Lemma

3.1, with g∗ replaced by g∗i .

To analyze schools’ preferences between groups, consider first the effect of a change in threshold grade

on S(q|i, g∗).
∂S(q|i, g∗)

∂g∗
= −[k(g∗)− g∗]fi(g

∗|q) < 0

by Assumption 2.2(ii). Since g∗P > g∗ > g∗U , S(q|P, g∗P ) < S(q|P, g∗) and S(q|U, g∗U ) > S(q|U, g∗), i.e. P

students are less attractive and U students more attractive at a given quality level. However, S(q|P, g∗P ) >

S(q|U, g∗U ), i.e. P students remain more attractive than U students. To see this, note that

S(q|P, g∗P )− S(q|U, g∗U ) = EFP |Q [g]− EFU |Q [g] +

∫ ḡ

g∗
P

(k(g)− g)dFP (g|q)−
∫ ḡ

g∗
U

(k(g)− g)dFU (g|q) > 0
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following the same proof as for Lemma 2.2(c) replacing Fi(g) with Fi(g|q).

Since the new payoff curves for schools follow the same rules as without Affirmative Action, the analysis

for quality choice remains the same as in that for Lemma 3.1, with q′G and q′B corresponding to the new

payoffs.

Combined, these strategies lead to (a)-(c).

Now consider how quality choices change for good quality schools. Since g∗U < g∗, S(q|U, g∗U ) > S(q|U, g∗)

everywhere and consequently maxS(q|U, g∗U ) > maxS(q|U, g∗). Moreover, since g∗P > g∗, S(q|P, g∗P ) <

S(q|P, g∗). Given continuity, this implies q′G = max{q : S(q|P, g∗P ) = maxS(q|U, g∗U )} < max{q : S(q|P, g∗) =

maxS(q|U, g∗)} = qG.

To analyze how bad quality schools’ choice changes, I appeal to a version of a monotone comparative

statics result from Milgrom and Shannon (1994) reproduced below as Lemma A.1. This application satisfies

the conditions for Lemma A.1. The function being maximized is f(x, t) = S(x|U, t), and f : R+ × R+ → R.

(R+,≥), where ‘≥’ is the euclidean relation, is both a partially ordered set9 and a lattice10 . Any function

where the choice set is a scalar is always quasisupermodular in the choice variable11 . argmaxq S(q|U, g)

moves in the same direction as g if increasing differences, which is sufficient for single crossing differences

from negative to positive12 holds. Increasing differences implies

∂2S(q|U, g)
∂q∂g

≥ 0 ⇒ −(k(g)− g)
∂fU (g|q)

∂q
≥ 0 ⇒ ∂fU (g|q)

∂q
≤ 0

using Assumption 2.3. Since g∗U < g∗, q′B ≤ qB if this condition holds and q′B ≥ qB otherwise. This completes

the proof for (d).

The difference in average realized human capital is identical to S(q|P, g∗P )− S(q|U, g∗U ), which I showed

above is positive. Given g∗P > g∗ and q′G < qG, it is easy to verify average realized human capital for the

P group falls. However, the change for the U group is ambiguous because the associated change in school

quality is ambiguous. The effect on economy-wide average human capital is consequently also ambiguous.

Lemma A.1. Let X be a lattice, let T be a partially ordered set, and let the function f : X × T → R have

the following properties:

1. ∀t ∈ T , f(·, t) is quasisupermodular in x.

2. f(x, t) has single crossing differences (SCD) from negative to positive.

9 A set (S,≥) is a partially ordered set if ∀x, y, z ∈ S, (i) x ≥ x (reflexivity), (ii) x ≥ y & y ≥ x ⇒ x = y (anti-symmetry),
and (iii) x ≥ y & y ≥ z ⇒ x ≥ z (transitivity).

10 A partially ordered set (s,≥) is a lattice if every two element subset of S has an infimum and a supremum.
11 A function f : X → R is QSM if f(x)− f(inf{x, x′}) ≥ 0 ⇒ f(sup{x, x′})− f(x′) ≥ 0.
12 A function f : X × T → R has single crossing differences if whenever x′′ > x′, the function g(t) = f(x′′, t) − f(x′, t)

crosses 0 only once from negative to positive. Increasing differences, or g(t) being increasing in t, is sufficient for single crossing
differences from negative to positive. It can also be shown that if X ⊆ Rl and T ⊆ Rk, then f(x, t) has ID if

∂2f

∂xi∂tj
≥ 0 ∀i = 1, . . . , l, j = 1, . . . , k.

The reversed inequality corresponds to decreasing differences, which is sufficient for single crossing differences from positive to
negative.
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Then argmaxx∈X f(x, t′′) ≥ argmaxx∈X f(x, t′) if t′′ > t′. The converse holds if the SCD is from positive

to negative.

Proof. See Milgrom and Shannon (1994).

Proof of Lemma 4.1.

(a) g(a, p, q, e) = g(τ(a, p), q, e) ⇒ ∂g
∂a = ∂g

∂τ
∂τ
∂a .

∂g
∂a > 0 from Assumption 2.2(ii) and ∂τ

∂a > 0 from

Assumption 4.1(i), so ∂g
∂τ > 0.

g(a, p, q, e) = g(τ(a, p), q, e) ⇒ ∂2g
∂e∂a = ∂τ

∂a
∂2g
∂e∂τ . From Assumption 2.2(iii) ∂2g

∂e∂a > 0, so ∂2g
∂e∂τ .

Similarly, by differentiating with respect to a and q I can prove that ∂2g
∂τ∂q > 0; and by differentiating

with respect to e and q I can prove that ∂2g
∂e∂q > 0.

(b) Analogous to the proof of Lemma 2.1(a) using τ(a, p) as the starting function instead of g(a, p, q, e).

(c) Analogous to the proof of Lemma 2.1(b) replacing g with τ .

Proof of Lemma 4.2.

(a) I use the following steps to find the equilibrium: (i) given a threshold grade g∗, find the optimal effort

schedule given the student does not attend university eN (τ), (ii) given g∗ find optimal effort schedule

given the student attends university eN (τ), (iii) compare payoffs associated with both schedules to find

the one that gives a higher payoff at each τ , (iv) find the value of g∗ consistent with university seats

being filled.

Step 1. By Lemma 4.1 g(τ, q, e) = g∗ corresponds to a decreasing function in the e − τ space

parameterized by g∗. Denote this function eG(τ). S(e|τ,not attend university) = g(τ, q, e) − C(e),

with the first order condition ∂g(τ,q,e)
∂e = C ′(e). Denote the implicit relationship between e and τ

defined by the first order condition as euN (τ). Implicitly differentiating the first order condition gives

∂e
∂τ =

(
C ′′(e)− ∂2g

∂e2

)−1
∂2g
∂e∂τ > 0 by Lemma 4.1(a) and Assumption 4.1(c). euN (0) = 0 since g(0, q, e) =

0 and maximizing the payoff is then equivalent to minimizing C(e). Let eG(τ) and euN (τ) intersect at

τ1. The payoff is concave in e since the second derivative ∂2g
∂τ2 − C ′′(e) < 0 by Assumption 4.1(iii).

Then

eN (τ) =

euN (τ) if τ < τ1

eG(τ) if τ ≥ τ1

Step 2. S(e|τ, attend university) = k(g(τ, q, e)) − C(e), with the first order condition ∂k
∂g

∂g(τ,q,e)
∂e =

C ′(e). Denote the implicit relationship between e and τ defined by the first order condition as

euY (τ). euY (τ) > euN (τ) becausae k(g) > g. Implicitly differentiating the first order condition, ∂e
∂τ =
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(
C ′′(e)− ∂k

∂g
∂2g
∂e2 −

(
∂g
∂e

)2
∂2k
∂g2

)−1 (
∂k
∂g

∂2g
∂τ∂e + ∂2k

∂g2
∂g
∂e

∂g
∂τ

)
> 0 by Assumption 4.1 and Lemma 4.1(a).

u
Y (0) = 0 since k(g(0, q, e)) = 0 and maximizing the payoff is then equivalent to minimizing C(e). Let

eG(τ) and euY (τ) intersect at τ0 < τ1. Then

eY (τ) =

eG(τ) if τ ≤ τ0

euY (τ) if τ > τ0

Step 3. The realized payoff conditional on not attending and attending university are

SN (τ) ≡ S(eN (τ)|τ,not attend university) = g(τ, q, eN (τ))− C(eN (τ))

SY (τ) ≡ S(eY (τ)|τ, attend university) = k(g(τ, q, eY (τ)))− C(eY (τ))

SN (0) = 0 since eN (0) = 0 and limτ→0+SY (τ) = −∞ since for any g∗ > 0 an arbitrarily small τ would

need an arbitrarily large e. It is easy to verify that S′
N (τ) > 0 and S′

Y (τ) > 0 everywhere. Both curves

are continuous because k(g), g(τ, q, e), eN (τ) and eY (τ) are continuous. Moreover SY (τ) > SN (τ) ∀τ ≥

τ0. For τ0 ≤ τ ≤ τ1 both curves correspond to the unconstrained maximum, and maxe{k(g(τ, q, e))−

C(e)} > maxe{g(τ, q, e) − C(e)} since k(g) > g. For τ > τ1 SN (τ) corresponds to the constrained

maximum, which by definition gives a lower payoff than the unconstrained maximum, which is always

lower for SN (τ). Lastly, for τ < τ0, eY (τ) > euY (τ), which requires ∂g(τ,qe(eY (τ)))
∂e − C ′(eY (τ)) < 0.

This further implies that in this range S′
Y (τ) =

(
∂g
∂e

)−1

C ′(e) ∂g∂τ > ∂g
∂τ = S′

N (τ). Thus, ∃τ∗ such that

SN (τ∗) = SY (τ
∗). Optimal effort is thus

e(τ) =

eN (τ) when τ ≤ τ∗

eY (τ) when τ > τ∗

Step 4. τ must satisfy [(1 − FP (τ
∗))λ + (1 − FU (τ

∗))(1 − λ)]n = Ā to ensure all university seats

are filled. Since τ∗ is determined by SN (τ∗) = SY (τ
∗) in the range where SY (τ) depends on g∗, it is

possible to find the g∗ which corresponds to the τ∗ that just clears college seats.

(b) From Lemma 4.1(c), 1− FP (τ
∗) > 1− FU (τ

∗).

(c) Realized human capital is given by κ(τ) ≡ S(e(τ)|τ). Average realized human capital for group i is

ki =
∫
κ(τ)dFi(τ) =

∫
κ′(τ)(1 − Fi(τ))dτ , where the last equality flows from integration by parts.

κ′(τ) > 0 since all its constituent parts have positive slope. The result follows from part (b).

Proof of Lemma 4.3.
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(a) Let g∗i > g∗ and let eGi(τ) be defined implicitly by g(τ, q, eGi(τ)) = g∗i . g
∗
i > g∗ ⇒ eGi(τ) > eG(τ) by

Lemma 4.1(a). euN (τ) and euY (τ) are unchanged. Let τ0i and τ1i be defined by eGi(τ0i) = euY (τ0i) and

eGi(τ1i) = euN (τ1i) respectively. Since e′Gi(τ) < 0, eu
′

N (τ) > 0 and euY (τ) > 0, τ0i > τ0 and τ1i > τ1.

Following the proof for Lemma 4.2(a), eY i(τ) = eGi(τ) > eY (τ) for τ < τ0i. Since e has moved further

from the unconstrained optimal, SY i(τ) < SY (τ) for τ < τ0i, implying τ∗i > τ∗. The analysis is

reversed for g∗i < g∗.

(b) Analogous to that of Lemma 2.2 replacing g∗, g∗P and g∗U with τ∗, τ∗P and τ∗U .

(c) The new effort schedule ei(τ) is found in the same manner as in Lemma 4.2(a). Since eGP (τ) > eG(τ),

it is easy to verify that eP (τ) < e(τ) for τ∗ ≤ τ ≤ τ∗P and eP (τ) > e(τ) for τ∗P < τ < τ0P . Since

eGU (τ) > eG(τ), it is easy to verify that eU (τ) > e(τ) for τ∗U ≤ τ ≤ τ∗ and eU (τ) < e(τ) for

τ∗ < τ < τ0. The effect on average effort depends on the relative density of students who increase and

decrease effort.

(d) Denote the new realized human capital for group i student with endowment τ by κi(τ). It is easy to

verify that κU (τ) > κ(τ) for τ∗U ≤ τ ≤ τ∗, κU (τ) < κ(τ) for τ∗ < τ < τ0, κP (τ) < κ(τ) for τ∗ ≤ τ ≤ τ∗P ,

and κP (τ) >< κ(τ) for τ∗P < leτ < τ0P . The effect on average realized human capital for each group,

and the difference between group averages, depends on the density of students in these intervals.
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