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Abstract

Affirmative action refers to discrimination in favour of historically disadvantaged sections

of society. On April 10, 2008, the Supreme Court of India upheld a controversial law that

reserved 27% of seats in state universities for the Other Backward Classes (OBC), in addition

to the 22.5% already reserved for the Scheduled Castes (SC) and Scheduled Tribes (ST).

There has been little theoretical economic analysis of affirmative action in higher education

in the Indian context, as most of the literature deals with US-style policies and institutional

frameworks. We first build a baseline model with two castes that differ in their conditional

distributions of human capital and where college admissions are determined by a mechanical

cut-off rule. We find a decrease in inequality but also a fall in economy-wide human capital.

We then allow schools to choose quality, and find that affirmative action results in a reduction

in the quality of schools that educate high-caste students. Under certain conditions, schools

educating low-caste students may also reduce quality, giving rise to the possibility of a general

reduction in human capital without any beneficial effect on inequality. Lastly, we allow

students to choose effort levels, and find that affirmative action induces more effort from a

significant portion of the high-caste and less effort from a portion of the low-caste, again

leading to the possibility of increased inequality.

JEL Classification: I21, I23, I28, I38, J7
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Chapter 1

Introduction

1.1 Affirmative Action in Higher Education

Discrimination in favour of historically disadvantaged sections of society is known by many

names: ‘affirmative action’ in the US, ‘positive discrimination’ in the UK, or simply ‘reser-

vations’ or ‘quotas’ in India and South Africa. The idea is one motivated by social justice

ideals that place value on equality. It is argued that some sections of the population have

been historically disadvantaged as a result of preference or taste-based discrimination, and

even though this taste-based discrimination has now been outlawed, these sections are still

socially and economically ‘backward’ when compared to the rest of the population. Examples

include the African-Americans and other ethnic minorities in the US who were victims of first

slavery and then racial discrimination, native Africans in South Africa who were victims of

Apartheid, and the lower castes1 in India who were victims of the rigid rules and prejudices

arising from the caste system.

The objective of affirmative action is to ‘undo’ the discriminations of the past through

reverse discrimination, i.e. discriminating in favour of these ‘backward’ groups so as to re-

duce the social and economic gap between them and the ‘forward’ sections of the population.

One area where affirmative action policies are seen in abundance is the labour market, where

affirmative action usually translates into preferential treatment towards applicants belonging

to disadvantaged groups. In countries such as India, there are explicit quotas in the govern-

ment sector for people belonging to disadvantaged groups. Thus, job allocation decisions are

made based not just on grounds of merit, but also the social background of the candidate.
1A brief introduction to the caste system of pre-modern India will be provided in Section 1.3.

1
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Education is another area where affirmative action policies are prevalent. Measures are

usually concentrated at the higher education (i.e. university) level. Often, candidates with

worse credentials belonging to a disadvantaged group are preferred for college admission

over a candidate with better credentials belonging to an advantaged group. The argument

is three-fold: firstly, the candidate from the disadvantaged group is more likely to have

grown up in a disadvantaged environment, and so has not had the opportunities to excel

that many candidates from advantaged groups enjoy; secondly, preferring the disadvantaged

group candidate fulfils an obligation that society has to undo past wrongs done towards that

group; and thirdly, diversity in college is a desirable end in itself2 as a more diverse student

community enhances the overall ‘college experience’.

There has been a substantial amount of academic work on affirmative action, but most

of it has been centered around the US. This thesis focusses on affirmative action in countries

like India, where institutional structures, and therefore the required points and methods of

enquiry are sometimes quite different.

1.2 Peculiarities in the Indian Education System

As is supported by the findings in Kingdon (1996), the free education provided by the state

is, for the most part, considered to be of extremely low quality, and consequently a major

chunk of educational services is provided by private, unaided schools. Whereas only the

extremely wealthy send their children to elite private schools in the west, private schooling is

more widespread in India, as evidenced by the increased demand for private unaided schools

even in remote rural areas by people with very low income levels (Kingdon, 1996, p.75).

The discernable quality and input gap between private and public schools has important

implications for access to higher education given the large share of education catered to by

the private sector.

Another major difference from the west is in college admissions. Universities in the west

often consider applicants on a case by case basis. The candidate may be interviewed and sev-

eral other factors apart from school grades are considered (pieces of written work, SAT scores

in the US, etc.). In India, the applicant pool is so large that the sheer logistics of following

such a system are incomprehensible. Instead, college admissions follow a mechanical ‘cut-off’
2It is interesting, though, to note that this explanation came into fashion in the US after the Supreme

Court struck down the use of minority quotas in admissions policies by rejecting the justification of remedying
past injustices in Regents of University of California vs. Blake (1978).
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rule. Students sit for nation-wide examinations in the last year of schooling3 (conducted by

one of several boards of secondary education) and obtain grades4. They then apply to the

college they wish to go to, following which the college announces a ‘cut-off’, and students

with grades equal to or greater than this threshold are admitted. The main point here is that

while in the west, colleges can be seen as vital decision-making agents, it is incorrect to do

so in the context of India as college admissions are, for all practical purposes, mechanical.5

Thus, institutional structures are very different in India when compared to the west, and

these differences mean that the vast majority of the literature, which is based on western

institutional frameworks, has limited relevance.

1.3 The Caste System and Affirmative Action in Indian Higher

Education

The caste system, prevalent in large tracts of pre-modern India, postulated a societal hier-

archy of four main castes: Brahmins (priests and teachers), Kshatriyas (warriors and aris-

tocracy), Vaishyas (traders and merchants) and Shudras (the serving class). Each of these

was further divided into several sub-castes. In addition, there were groups like the Dalits or

‘untouchables’ who were considered too low to be included in the caste system. Castes were

originally associated with occupations and later became hereditary. The lower castes were

discriminated against in that they were given the lowest paying and most undesirable jobs

and as a result were socially and economically ‘backward’ in relation to the upper castes.

Caste identification even in modern times is relatively simple, as members of a particular

caste in a region are usually associated with a particular surname.

Although taste-based discrimination along caste lines has been outlawed in modern India,

the lower castes still lag behind the upper castes. Affirmative action in India is an attempt

to bring the lower castes up to speed with the rest of the population by means of quotas in

higher education and government jobs. As is described in Bertrand, Hanna, and Mullainathan

(2008), the Constitution since 1951 has allowed for 15% of seats in state universities to be
3In some cases, especially for engineering and medical courses, students sit for standardized examinations

that are not part of the normal schooling process.
4Grades in India are actual numbers, e.g. marks obtained out of 100.
5This is not to say that colleges are not decision making agents. The cut-off strategy described here is

a rational trigger strategy of a bayesian game in which colleges look to maximize the quality of their intake
while observing only grades. However, due to the limited information observed by the colleges, their decision
is rendered uninteresting from an analytical point of view. Therefore, in our analysis, we will treat college
admissions as mechanical.
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reserved for the Scheduled Castes (SC) and 7.5% for Scheduled Tribes (ST). These consist of

historically the lowest castes, the Dalits and the Adivasis or tribal people. In its 2006-2007

winter session, the Indian Parliament passed a bill that provided for an additional reservation

of 27% for the Other Backward Classes (OBC), a group of castes that were more backward

than the upper castes, but less so than the SC or ST.6 In April 2008, after initially giving

a stay order, the Supreme Court upheld this law.7 The time-frame for implementation was

set to three years starting with the 2008-09 academic year. When fully implemented, total

reservations for backward castes will stand at 49.5%.

The OBC reservations led to widespread polarization of opinion, with some supporting

and others opposing the policy. There were several anti-reservations agitations8 across the

country in May 2006 whereas other sections of society and almost all political parties stood

firm in support of the policies. Several of the issues touched upon in the ensuing public

debate also find mention in Ghosh (2006) and The furore over reservations: a primer, The

Siliconeer, June 2006. Some of the issues are as follows.

Firstly, is it morally correct to discriminate against someone merely because they were

born to high-caste parents, something that is clearly outside their control?9

Secondly, whom does affirmative action actually benefit? In the modern situation where

not all low-caste people are disadvantaged and not all high-caste people are advantaged, many

believe that affirmative action actually benefits the ‘creamy layer’ among the low-castes, i.e.

people belonging to lower castes who are socially and economically advantaged. The Supreme

Court, in most of its rulings relating to affirmative action, has recommended that reservations

should not be extended to the ‘creamy layer’.10

Thirdly, are the lower castes able to take advantage of affirmative action? The argument

is that the less meritorious lower caste candidates let in at the cost of more meritorious higher

caste ones do not have the required skills to cope with the level of education, and are thus not

able to take as much advantage of a college education as more meritorious students would
6The Mandal Commission report of 1978 identified 3747 castes as backward, which in the 1931 census

formed 52% of the population (caste-based information has not been collected in any census since then). How-
ever, it only recommended 27% reservations due to a Supreme Court ruling that the government reservations
could not exceed 50%. (Bertrand et al., 2008, p.6) Projections of the current OBC population vary. The
National Sample Survey Organization (NSSO), based on the 61st round of the National Sample Survey (NSS)
carried out in 2004-05 estimated a share of 40.94%. This information is available in NSS Report No. 514,
which is available at the NSSO website (http://mospi.nic.in/nsso test1.htm).

7See SC allows 27% quota for OBCs, The Times of India, 11 April 2008.
8See, for instance, Delhi medical students plan indefinite fast, The Hindu, 14 May 2006.
9See Letters to the editor: Reservation issue, The Hindu, 1 May 2006.

10See SC allows 27% quota for OBCs, The Times of India, 11 April 2008.
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have done. There is thus a deterioration in education standards.11

Fourthly, should attention not be focussed at the school level, where the gap between

private and government schools leads to a substantial portion of the population having a

handicap even before entering college?12

Lastly, how effective are these policies in reducing inequality? As is mentioned in Bertrand

et al. (2008), reservations were originally set to expire in 1960, but have since been extended

many times. The current expiry is set for 2010, but it is likely to be extended again. Moreover,

the list of castes receiving benefits has steadily grown over the years.

An issue that has surprisingly not been raised very often is the effect of affirmative action

policies on the incentives for effort. Could affirmative action cause lower castes to ‘take

it easy’, as they are assured of getting into college without working too hard, or does it

motivate people to try harder, as extremely poor people can now harbour realistic aspirations

of going to college? Answers to such questions could potentially have profound effects on the

effectiveness of affirmative action policies.

1.4 Questions of Interest

A rigorous approach to all aspects of affirmative action requires inputs from not just eco-

nomics, but also philosophy, law and political science. Even if we restrict ourselves to an

economic analysis of the topic, an M.Phil. thesis can, at most, explore only a few facets of

affirmative action.

The prime motivating factor behind this thesis is a lack of effort in the economic liter-

ature to rigorously analyze the complex incentive mechanisms that influence the outcomes

of affirmative action policies under institutional structures different from those in the west.

Specifically, there is a desire to provide a theoretical framework that better fits the circum-

stances in India.

That Indian institutional frameworks have been widely neglected in the economic litera-

ture relating to affirmative action is surprising, since India is home to more people than one

billion people, which is more than the populations of the US and the EU combined. Surely,

if over one-sixth of humanity is affected by these institutional structures, it deserves some

attention from the economic fraternity?
11See, for example, Quota fallout: Merit goes for a toss in GATE entrance, The Times of India, 23 May

2008.
12See Beyond the rhetoric of reservation, The Hindu, 28 May 2006.
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The specific questions of interest that we seek to answer in this thesis are as follows:

1. Does affirmative action reduce inequality?

2. What incentives does affirmative action in college admissions create for schools to invest

in their students?

3. What incentives does affirmative action create for students’ effort levels?

1.5 Structure of the Thesis

The thesis is structured as follows. In Chapter 2, we review some related literature. In

Chapter 3, we build a simple baseline model where an individual can either belong to a high

or a low-caste, and where historical taste-based discrimination is manifested in the fact that

the high-caste’s distribution of human capital (and hence earnings) stochastically dominates

that of the low-caste. In doing so, we capture the idea of the low-caste being somehow

disadvantaged in relation to the higher caste. We construct a mechanism whereby this initial

difference leads to inequality in the human capital attainment of the next generation after

education. We find in the simple model that affirmative action reduces inequality in human

capital, but this reduction comes with a loss in aggregate human capital.

In Chapter 4, we extend the basic model by allowing schools to choose quality. We

construct an equilibrium where high-caste students go to better quality schools than low-

caste students, and in doing so we capture the notion that high-caste children are often given

better opportunities than their low-caste counterparts. Here, we find that affirmative action

leads to a reduction in quality for schools educating high-caste students, whereas the effect on

the quality of schools educating low-caste students is ambiguous. We find that under certain

circumstances all schools can experience a reduction in quality, and affirmative action may

actually increase inequality in human capital.

Chapter 5 extends the basic model to allow students to choose their effort levels, and in

doing so allows incentives for effort to be analyzed explicitly. We find that incentives for effort

increase for some members of both castes and decrease for other members. Again, we find

that under certain circumstances, it is possible for affirmative action to increase inequality.

Chapter 6 concludes.



Chapter 2

Literature Review

2.1 Theoretical Contributions

A seminal paper in the field of affirmative action is Coate and Loury (1993), which builds a

model of the interaction between workers’ decisions to invest in qualifications and employers’

job-assignment decisions. Employers have prior beliefs about the average level of qualifica-

tion of a group of workers, and they use this in conjunction with noisy test scores to set

standards for the group, i.e. a test score above which workers are assigned to the more de-

manding task which can only be performed by qualified workers. This affects the workers’

investment decision as it determines the probability of being assigned to a higher-paying task.

In equilibrium, the proportion of workers that choose to invest in qualifications must tally

exactly with the employers’ beliefs. The existence of multiple equilibria and the possibility

of different ex-ante identical groups of workers being stuck in different equilibria can lead to

statistical discrimination. It is then shown that if the groups are ex-ante identical, under

certain conditions affirmative action can break negative stereotypes about minorities stuck

in a low-level equilibrium, but it is also possible to have a ‘patronizing equilibrium’, where

standards are lowered for the minority group and raised for the other group to achieve the

desired intake, leading to a widening of the qualifications gap. This paper established em-

ployers’ beliefs as a crucial factor in affirmative action analysis. This is not very relevant to

the current work as in our context colleges are not decision making agents, so beliefs do not

enter into our analysis. Moreover, we model the two groups as ex-ante different due to the

effects of taste-based discrimination in the past.

We now examine some contributions that relate to affirmative action in education. Many

7
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of these contributions are concerned with providing efficiency arguments for affirmative ac-

tion.

Durlauf (2008) builds a simple model where a college student’s human capital is deter-

mined by human capital accumulated during youth, human capital of other college students

and college quality. It is then argued that an affirmative action admissions policy could be

more efficient (in terms of maximizing aggregate human capital) than a meritocratic one if

students perform better when interacting with students of different abilities (essentially a

variant of the diversity argument) and if low human capital students are able to take better

advantage of a high quality university education than high human capital students. It is also

noted, however, that there has been very little empirical work to make informed conjectures

about whether these conditions hold in practice. In this thesis, we abstract from the diversity

argument in that we ignore peer effects in education. This is primarily because, firstly, diver-

sity seems to be used as a proxy for the social justice argument, and secondly it is unclear as

to whether and how diversity actually influences human capital. Also, we present some em-

pirical evidence from Bertrand et al. (2008) that suggests that students from disadvantaged

backgrounds experience a lower absolute increase in human capital from a college education.

De Fraja (2002) builds a model with several groups, with each group’s distribution of

ability first order stochastically dominating the last. Income depends on ability, own educa-

tion and the general education level in the economy (which is an externality). In the absence

of government intervention, private maximization exercises to determine investment in edu-

cation do not take into account the externality. When the government intervenes and offers

public education, it does so, and would like to give the high ability people more education.

But ability is not observable, and in order to induce truthful revelation the government must

drastically reduce education provided to the low ability people, who then find it better to

revert to private education. Because, firstly, the government has limited funds to subsidize

education, and secondly, disadvantaged groups have fewer high ability individuals (due to

the crucial assumption that the hazard rate is higher for advantaged groups), the most ef-

ficient outcome attainable under asymmetric information is one where disadvantaged group

members receive more education than advantaged group members of equal ability. Here,

the argument for any intervention relies on the presence of an externality, which we wish to

de-emphasize in our modeling.

Rotthoff (2008) builds a model where colleges care about placing their students in em-
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ployment. It examines firms’ hiring decisions, and argues that hiring a candidate belonging

to a protected community entails an extra cost, i.e. the possibility of lawsuits particular to

the protected community, like failing to hire on the basis of race. Since hiring based lawsuits,

which are more common, tend to incentivize the hiring of protected community workers, firms

will give preference to protected group applicants. As colleges care about placement, they

will also want to give preference to individuals from the protected group. This work, again,

relies on colleges acting as agents during the admissions process, whereas in the situation we

wish to model admissions are mechanical.

Rey and Racionero (2008) also rely on an externality to justify affirmative action. Their

model is one of inter-generational interactions. Education is costlier for people of uneducated

parents, and this effect is larger for the minority group. Private decisions about whether

to invest in education is inefficient because agents fail to account for the fact that their

being educated increases the chances of their children being educated. Since this externality

is larger for the minority group, they also experience more underinvestment in education.

Again, the result is a direct consequence of an externality, which we abstract from.

Epple, Romano, and Sieg (2008) build a rich model of education provision with col-

leges that differ in initial endowments, where college quality explicitly depends positively on

racial diversity. Colleges choose, among others, an admissions rule to maximize quality. In

equilibrium, tuition is set equal to the reservation price and colleges will admit a student

whose reservation price is not less than their effective marginal cost. Due to the presence

of racial diversity in the quality index function and the assumption that the minority class

is under-represented in college, the effective marginal cost for a minority applicant is lower

as admitting him enhances racial diversity. As a result, minority students pay lower tuition

fee and attend higher quality schools than their equally qualified non-minority peers. If af-

firmative action is disallowed, the paper shows that colleges will try to achieve the diversity

objective by exploiting the correlation of ability and parental income with race. The model

is then calibrated assuming Cobb-Douglas functional forms and key parameters are chosen

based on survey data. They predict that proscription of affirmative action would result in

a 35% decline in minority representation in the top tier colleges. The results of this paper

hinge on the colleges wanting diversity, which the authors admit is a controversial claim.

Fryer, Loury, and Yuret (2008) model two groups differentiated by the costs of effort, with

members of the disadvantaged group more likely to have higher costs than their advantaged
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group counterparts. Colleges (or firms) must choose an acceptance policy. It is shown,

analogous to above, that if colleges seek racial diversity while not being allowed to discriminate

based on race, they will give increased weightage to (imperfect) proxies that are correlated

with race in their acceptance policies. Another important result in this paper concerns the

effect of affirmative action on effort incentives. It is shown that if the marginal applicant

is qualified (i.e. chooses to exert effort), then pursuit of affirmative action that seeks a

minor increase in representation of the under-represented race leads to a reduction in the

effort incentives of the advantaged group and an increase for the disadvantaged group when

compared to the case where colleges do not care about diversity. If the marginal applicant

is not qualified, then the results of such affirmative action are reversed. If, however, a major

increase in representation is sought and the marginal applicant is at the border of being or not

being qualified, then the qualifications of both groups will decrease. In Chapter 5, we explore

the effect of affirmative action on effort incentives under different modeling specifications.

2.2 Empirical Contributions

As we are primarily concerned with affirmative action in higher education in the context of

conditions prevailing in countries such as India, the empirical literature focussing on the US

has limited appeal. We briefly review one such contribution. Howell (2004) builds a structural

model of students’ application decisions and colleges’ acceptance decisions. The structural

parameters are estimated by maximum likelihood estimation using National Education Lon-

gitudinal Survey (NELS) data which surveyed a cohort of students from 1988 to 2000. Based

on this model, Howell predicts that banning affirmative action in the US would not sig-

nificantly affect disadvantaged group representation, except in the most selective four-year

institutions, where representation would fall by 3.3%. The author prescribes the replacement

of race-based affirmative action in the US with improved support programmes for minority

groups.

There has been surprisingly little research carried out in the Indian context. The only

major works that the author is aware of are two recent contributions, inspired perhaps by

the recent public debate in India following the introduction of the OBC quota. Desai and

Kulkarni (2008) build a logit model of the probability of transitioning from one education level

to the next using National Sample Survey (NSS) data between 1983 and 2000. They define an
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educational gap as a difference in the probability of proceeding to the next level of education

conditional on having completed the previous level. They find that the educational gap

between Hindus and Muslims (who are not a target group of the affirmative action program)

has continued throughout the period of affirmative action, whereas the gap between upper

caste groups and Dalits (who are a target group) has decreased. However, the decline has

been at the school level whereas affirmative action has been focussed at the college level.

The authors propose that the reduction in the educational gap is due more to affirmative

action in employment. They do not find a strong relationship between affirmative action

and a reduction in inequality. As an aside, their data contains no evidence that benefits are

cornered by the ‘creamy layer’ of the lower caste groups.

By far the most closely related work to this thesis is Bertrand et al. (2008). The authors

collected data on several individuals applying to engineering colleges in 1996 in one Indian

state. They then use this data to compare the profiles of the backward-caste candidates ben-

efiting from affirmative action to the other higher-caste candidates. They primarily compare

socio-economic backgrounds, the increase in earnings due to a college education and labour

market outcomes. Several of these findings may be viewed as stylized facts which are used

at times to justify modelling assumptions. Also, the models presented behave in ways that

are largely consistent with these findings. The main findings that relate to this thesis are as

follows. Firstly, cut-off scores for high-caste applicants were higher than for low-caste appli-

cants. Secondly, this study found that affirmative action successfully targets the economically

disadvantaged at the margin, in that the mean parental income of upper-caste candidates who

lost seats due to affirmative action was higher than that of those lower-caste applicants who

gained seats. However, they also suggest that among the lower castes, it is the economically

better off that benefit more. Thirdly, an engineering college education increases lower-caste

members’ income by between 40% and 70%, which is indistinguishable from the rate of in-

crease enjoyed by the higher-caste members. Fourthly, there is an absolute cost involved

with these programs as engineering college raises the income of high-caste students by more

in absolute value than the increase enjoyed by the lower-caste students. Fifthly, higher-caste

applicants are more likely to have been educated at English-medium private schools. Lastly,

there is slight evidence for a reduction in inequality overall, but “large standard deviations

prevent. . . unequivocal conclusions”(Bertrand et al., 2008, p.18).



Chapter 3

The Baseline Model

We shall first build a Donald Duck1 model in order to obtain baseline results. As one of

our questions of interest is whether affirmative action reduces inequality, we must specify a

measure of inequality. To this end, we focus on average realized human capital, and we define

inequality as the difference in the average realized human capital between castes. We also

look at the effect of affirmative action on economy-wide average human capital. Our outcome

measures are, thus, average realized human capital for each caste, inequality in human capital

and economy-wide average human capital.

3.1 Model Set Up

Let there be a population of n people. A fraction λ are ‘high-caste’ (denoted H) and a fraction

(1− λ) are of ‘low-caste’ (denoted L). These individuals each undergo schooling and obtain

grades. Based on these grades, they compete for Ā < n college seats. College admissions

are mechanical, in the sense that the Ā people with the highest grades are admitted (we call

this a ‘cut-off’ admissions policy). Then those that are admitted to college undergo higher

education, after which payoffs are received. In this model, the payoff to each of the n people

in the population is the level of human capital they end up with after education.

The specification of this very simple model means that there are no decisions taken by

any economic agents. The whole process is completely mechanical, and so deriving results

does not involve solving for optimal behaviour of any kind.
1In the author’s view, a particular Disney character has had an unfair hegemony when it comes to the

naming of baseline models. This is an attempt at propagating the cause of the other Disney (and indeed,
non-Disney) characters that have been so sadly sidelined by academics the world over.

12
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3.1.1 School Education

School grades g are a function of school quality q ≥ 0, the student’s ability a ≥ 0, parents’

human capital p ≥ 0 and effort choice e ≥ 0.

g = g(q, a, p, e) (3.1)

It is fairly obvious as to why a, e and q should enter the grades function. The fact that p enters

captures the fact parents with high human capital will positively affect their child’s school

attainment by providing better home teaching, and/or (as high human capital generally trans-

lates into higher income) by hiring better home tutors and providing better infrastructural

resources such as better books.

We now make some plausible assumptions on g.

Assumption 3.1. For simplicity, g(q, a, p, e) is continuous and twice differentiable. Also,

(i) g is increasing in all its arguments; (ii) all second order cross derivatives are positive; and

(iii) g(0, a, p, e) = g(q, 0, p, e) = g(q, a, 0, e) = g(q, a, p, 0) = 0

(i) ensures that higher ability students end up with higher grades, and so on. (ii) means

that educational inputs are complementary.2 (iii) is a simple level fixing assumption made

for convenience.

To derive baseline results, we make the following simplifying assumption.

Assumption 3.2. q is non-stochastic and constant across all schools and e is non-stochastic

and constant across the entire population.

We shall vary q in Chapter 4 and e in Chapter 5.

3.1.2 College Education

School grades represent human capital attained at the end of school. For those who go to

college, human capital is further enhanced as follows.

k = k(µ, g) (3.2)
2This is a common modelling assumption. For example, see Epple et al. (2008), Fernández and Rogerson

(2001) and Nechyba (2003). This assumption will be useful in Chapter 5.
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Here, µ ≥ 0 is college quality. We could have had effort and other variables enter into this

function as well, but we shall ignore those effects as they are not crucial for any of the following

analysis. We now make the following assumptions about the college education process.

Assumption 3.3. k(µ, g) is continuous and twice differentiable. Also, k(0, g) = k(µ, 0) = 0,
∂k(µ,g)
∂µ ≥ 0, ∂k(µ,g)

∂g ≥ 1 and k(µ, g) > g for g, µ 6= 0.

This last assumption implies that a college education will always increase human capital,

and people with higher grades will experience a higher absolute increase in human capital.3

This assumption should not be taken to mean that students with higher grades are ‘better

able’ to take advantage of college education, as it is consistent with, say, a situation where

college increases human capital by a fixed proportion.4

3.1.3 Individual Characteristics

To finish the description of the model, for each caste i, let a and p be distributed according to

the joint distribution function Hi(a, p). Let the marginal distribution of a be denoted Xi(a)

and let the conditional distribution of p|a be denoted Bi(p|a). We make the following crucial

assumption which will be central to almost all of the following analysis.

Assumption 3.4. (i) Hi(·, ·), Xi(·) and Bi(·) are continuous and have finite first moments;

and (ii) XH(a) = XL(a) and BH(p|a) ≤ BL(p|a) ∀a, p

This states that ability is distributed evenly across castes, but for a given ability, H

students are likely to have parents with more human capital than the L students’ parents. In

other words, the conditional distribution of p for H people first order stochastically dominates

that for L people.5 This captures the idea that the lower caste has been the victim of historical

taste-based discrimination.
3Bertrand et al. (2008) report that going to engineering college increased the incomes of the low-caste

college seat gainers (who have comparatively lower grades) by about Rs. 5000 less than it does for the
displaced high-caste students (who have comparatively higher grades).

4A proportionate increase of between 40% and 70% is what is supported by the data in Bertrand et al.
(2008).

5It is easy to see that this implies first order stochastic dominance of the marginal distribution as well.
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3.2 Baseline Results without Affirmative Action

3.2.1 Distribution of Grades

Lemma 3.1. Grades for caste i are distributed according to the distribution function Fi(g) =

Ea [Bi (P (a; g))] where P (a; g) is implicitly defined by g = g(q, a, P (a; g), e).

Proof. Looking at the grades equation 3.1 and regarding q and e as fixed, the equation

implicitly defines p as a function of a parameterized by g. Call this function P (a; g). From

Assumption 3.1, we know that the grades function is increasing in all its arguments. So, if one

increased a, p would have to be reduced to achieve the same g. P (a; g) is,thus, a decreasing

function.

The probability that a grade will be below g is then the probability mass of Hi(a, p) that

lies to the left and below this function plotted in the a−p space. This is calculated as follows.

Fi(g) =
∫
a

∫ P (a;g)

0
hi(a, p) dp da (3.3)

Using the fact that any joint probability can be separated into a marginal and a conditional

distribution, we can now write the following.

Fi(g) =
∫
a

∫ P (a;g)

0
xi(a)bi(p|a) dp da (3.4)

But the marginal does not depend on p, and so can be taken outside the second integral.

Then, integrating gives us the following.

Fi(g) =
∫
a
xi(a)Bi(P (a; g)) da = Ea [Bi (P (a; g))] (3.5)

Proving this result has equipped us to prove the following first order stochastic dominance

result.

Theorem 3.1. FH(g) ≤ FL(g) ∀g

Proof. Given Assumption 3.4, BH (P (a; g)) ≤ BL (P (a; g)) for any P (a; g). However, also due

to Assumption 3.4, the marginal distribution of a is the same across castes. So Ea [BH (P (a; g))] ≤

Ea [BL (P (a; g))], which proves the result.
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3.2.2 The Cut-Off Grade

Having described the behavior of grades, we move on to describing what happens during

college admissions. The ‘cut-off’ admissions rule can be formally described as follows. Take

a cut-off grade g∗. Since a fraction 1 − FH(g∗) of H people get grades above g∗ and the

total number of H is λn, the number of H admitted into college must be (1− FH(g∗))λn.

Similarly, we can get a number for L people. The total number of college admits must be Ā.

This gives us the following admissions equation which determines g∗.

[(1− FH(g∗))λ+ (1− FL(g∗)) (1− λ)]n = Ā (3.6)

Theorem 3.2. In the baseline model, without affirmative action, the H community is over-

represented at the college level.

Proof. From Theorem 3.1, 1 − FH(g∗) ≥ 1 − FL(g∗), i.e. H students are more likely to get

into college than L students.

3.2.3 Realized Human Capital

For community i, average human capital given a cut-off level g∗ is given by

k̃i =
∫ g∗

0
g dFi(g) +

∫ ∞
g∗

k(µ, g) dFi(g)

= ḡi +
∫ ∞
g∗

(k(µ, g)− g) dFi(g)

where ḡi =
∫ ∞

0
g dFi(g)

(3.7)

This expression has the following intuitive interpretation. Expected human capital is the

expected human capital produced by school in addition to the extra human capital obtained

from a college education. Note that ḡi is independent of g∗, i.e. if the cut-off grade is changed,

only the additional returns from college will change; the returns from school remain the same.

Lemma 3.2. The distribution of realized human capital is unequal, with k̃H ≥ k̃L

Proof. Integrating the second term in equation 3.7 by parts and applying Theorem 3.1 the

result follows.
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Average human capital in the economy in this setting is given by

k̃ = λk̃H + (1− λ)k̃L

= ḡ +
[
λ

∫ ∞
g∗

(k(µ, g)− g) dFH(g) + (1− λ)
∫ ∞
g∗

(k(µ, g)− g) dFL(g)
]

where ḡ = λḡH + (1− λ)ḡL

(3.8)

This has a similar interpretation as above, with average human capital in the economy being

human capital obtained from a school education plus the additional human capital obtained

from a college education. Again, ḡ is independent of g∗.

3.3 Affirmative Action

3.3.1 The Cut-Off Grades

In this model, as with all subsequent models, affirmative action is taken to mean a policy

that achieves ‘equal representation’, i.e. the government mandates that the proportion of H

and L people admitted to college must be the same. To achieve this, we would need two

cut-off grades; g∗H for H people and g∗L for L people such that

1− FH(g∗H) = 1− FL(g∗L) (3.9)

In addition, the admissions equation becomes

[(1− FH(g∗H))λ+ (1− FL(g∗L)) (1− λ)]n = Ā (3.10)

Together, equations 3.9 and 3.10 determine g∗H and g∗L.

Lemma 3.3. As a result of affirmative action, the cut-off for H rises while the cut-off for

L falls.6

Proof. Without affirmative action, from Theorem 3.2 we have 1−FH(g∗) ≥ 1−FL(g∗). Thus,

in order to move from admissions equation 3.6 to admissions equation 3.10 we would need

1−FH(g∗) ≥ 1−FH(g∗H) and 1−FL(g∗) ≤ 1−FL(g∗L). However, given Theorem 3.1, this is

only possible if g∗L ≤ g∗ ≤ g∗H .

6Bertrand et al. (2008) report that the cut-off scores for admission into engineering colleges covered in the
study were 480/800 for the upper castes and 182/800 for the SC.
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3.3.2 Realized Human Capital

Let us now move to the effect of affirmative action on realized human capital for each caste

and its distribution between castes. New average human capital for caste i is given by

k̃AAi = ḡi +
∫ ∞
g∗i

(k(µ, g)− g) dFi(g) (3.11)

Theorem 3.3. In the baseline model, affirmative action reduces inequality in human capital,

but does not eliminate it.

Proof. Average (and hence total) human capital for H falls since

k̃AAH − k̃H = −
∫ g∗H

g∗
(k(µ, g)− g) dFH(g) ≤ 0 (3.12)

Similarly, average (and hence total) human capital for L rises since

k̃AAL − k̃L =
∫ g∗

g∗L

(k(µ, g)− g) dFL(g) ≥ 0 (3.13)

However, the distribution of realized human capital is still unequal. To see this,

k̃AAH − k̃AAL = [ḡH − ḡL] +

[∫ ∞
g∗H

(k(µ, g)− g) dFH(g)−
∫ ∞
g∗L

(k(µ, g)− g) dFL(g)

]
(3.14)

[ḡH − ḡL] = M is positive given the first order stochastic dominance result we proved in

Theorem 3.1. This is intuitive, as H students will get higher returns from school than L

students. We must show that
∫∞
g∗H

(k(µ, g)− g) dFH(g)−
∫∞
g∗L

(k(µ, g)− g) dFL(g) = N > 0, i.e.

the extra gains from college are also higher for H students.7 To do this we integrate N by

parts and use the fact that 1− FH(g∗H) = 1− FL(g∗L) to get

N =[1− FL(g∗L)][(k∗H − g∗H)− (k∗L − g∗L)] +

[∫ ∞
g∗H

(kg − 1)(1− FH(g)) dg

−
∫ ∞
g∗H

(kg − 1)(1− FL(g)) dg

]
−
∫ g∗H

g∗L

(kg − 1)(1− FL(g)) dg

(3.15)

Here, we have used k∗i = k(µ, g∗i ) and kg = ∂k(µ,g)
∂g to make the representation more concise.

Next, we observe that
∫∞
g∗H

(kg − 1)(1 − FH(g)) dg −
∫∞
g∗H

(kg − 1)(1 − FL(g)) dg is positive as

7This is not as straightforward as before, as the integrals are over different ranges, and one might think
that the extra range for L people might compensate for the stochastic dominance effect.
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a straightforward application of Theorem 3.1. Also, as 1 − FL(g) is weakly decreasing, and

kg − 1 > 0 from Assumption 3.3, we have

∫ g∗H

g∗L

(kg − 1)(1− FL(g)) dg ≤ (1− FL(g∗L))
∫ g∗H

g∗L

(kg − 1) dg

= (1− FL(g∗L))[(k∗H − g∗H)− (k∗L − g∗L)]

(3.16)

Plugging this into equation 3.15, we get

N ≥

[∫ ∞
g∗H

(kg − 1)(1− FH(g)) dg −
∫ ∞
g∗H

(kg − 1)(1− FL(g)) dg

]
> 0 (3.17)

We have thus shown that average human capital rises for L people and falls for H people,

but the H people still enjoy a higher level of human capital after affirmative action. This is

due to the fact that gains from a college education are higher in absolute terms for people

with higher grades, and even with affirmative action, the H people that go to college have

higher grades than the L people that go to college.

Average human capital across the economy is now given by

k̃AA = ḡ +

[
λ

∫ ∞
g∗H

(k(µ, g)− g) dFH(g) + (1− λ)
∫ ∞
g∗L

(k(µ, g)− g) dFL(g)

]
(3.18)

Theorem 3.4. In the baseline model, affirmative action leads to a fall in economy-wide

average human capital.8

Proof. The introduction of affirmative action leads to college seats being taken away from

H people with grades in the range [g∗, g∗H ] and given to L people with grades in the range

[g∗L, g
∗]. As the number of college seats is constant, we know that the number of people losing

seats must be the same as the number of people gaining them. Mathematically,

λn

∫ g∗H

g∗
dFH(g) = (1− λ)n

∫ g∗

g∗L

dFL(g)

⇔ (k(µ, g∗)− g∗)
∫ g∗H

g∗
λ dFH(g) = (k(µ, g∗)− g∗)

∫ g∗

g∗L

(1− λ) dFL(g)

⇔
∫ g∗H

g∗
λ(k(µ, g)− g) dFH(g) >

∫ g∗

g∗L

(1− λ)(k(µ, g)− g) dFL(g)

(3.19)

8This is supported by the result in Bertrand et al. (2008) that affirmative action policies come at an absolute
cost.
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We move from the second equality to the inequality because we know from Assumption 3.3

that (k(µ, g) − g) is increasing in g. So it must be true that (k(µ, g∗) − g∗)
∫ g∗H
g∗ λ dFH(g) <∫ g∗H

g∗ λ(k(µ, g)−g) dFH(g) and (k(µ, g∗)−g∗)
∫ g∗
g∗L

(1−λ) dFL(g) >
∫ g∗
g∗L

(1−λ)(k(µ, g)−g) dFL(g)

We can now apply inequality 3.19 as follows. The change in economy-wide average realized

human capital is

k̃AA − k̃ =
∫ g∗

g∗L

(1− λ)(k(µ, g)− g) dFL(g)−
∫ g∗H

g∗
λ(k(µ, g)− g) dFH(g) < 0 (3.20)

3.4 Summary of Main Results

In this chapter, we built a basic model of human capital formation through an education

system with competition for a fixed number of college seats. To model the idea of the

high-caste ‘having it easier’, we argued that parents’ human capital is an input into their

children’s human capital formation at school, and that the distribution of the high-caste’s

human capital first order stochastically dominated that of the low-caste. This led to the

distribution of grades for the high-caste children first order stochastically dominating that

of the lower caste. Given the mechanical cut-off college admissions rule, this led to over-

representation of high-caste children at college, and consequently, an inequality in human

capital formation. This inequality thus stemmed from the unequal distribution of parents’

human capital, and was magnified by the over-representation of the high-caste at college.

Affirmative action led to a redistribution of college seats. Some seats were transferred

from the high to low-castes to achieve equal representation by choosing different cut-off grades

for each caste. However, we found that while this reduced inequality, it did not eliminate

it as even though the same proportion of high and low-caste students went to college, the

high-caste students generally performed better because their parents generally had higher

human capital. Also, we found that aggregate human capital reduced, as college seats were

taken from high-caste students who were more ‘able’ to take advantage of a college education

low-caste students who were less ‘able’.



Chapter 4

Differences in School Quality

Many proponents of affirmative action argue that affirmative action is required to redress the

imbalance of opportunities made available to children of different castes in their lives prior

to college education. The starkest example of this is that high-caste children tend to go to

‘good’ schools whereas their low-caste counterparts go to ‘bad’ schools. In this section we

allow schools to choose quality in order to loosely reproduce this stylized fact. Then, we look

into the effects of affirmative action on school quality in addition to our previous outcome

measures.

4.1 Model Set Up

4.1.1 School Education, College Education and Individual Characteristics

We retain the same definitions of g(q, a, p, e), k(µ, g) and H(a, p) used in Chapter 3, obeying

Assumptions 3.1, 3.3 and 3.4. However, now q is allowed to vary, so we have the following

simplifying assumption.

Assumption 4.1. e is non-stochastic and constant across the population.

4.1.2 Schools as Agents

For simplicity, let there be n schools, which will each educate one student.1 Each school is free

to choose its quality q in as much as it hires teachers and invests in physical infrastructure.
1The exact number of schools is not critical to the analysis. The analysis would proceed just as well with

an arbitrary number of schools; it would only be slightly more cumbersome.

21
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Assumption 4.2. Costs of increasing quality are homogeneous2 across schools at C(q) with

C(0) = 0, C ′(q) > 0 and C ′′(q) > 0.

This model will be driven by the incentives facing schools and their resultant choices of

quality.

The payoff to a school is specified as follows. Schools look to maximize their reputation,

which is measured by how well its alumni go on to perform in life. This can be motivated by

the following logic. Schools with good reputations can usually charge higher fees. Moreover,

they will attract more intelligent students and as their alumni do extremely well later in life,

they can expect more donations or even state funding.3

In keeping with the reputation objective, we specify a school’s payoff as the realized

human capital of its student. However, as we shall specify later, when the school chooses its

quality, it is only able to see the caste of applicants, not ability or parental income. Thus,

we define the (prior) expected payoff of a school as

S(q; i, g∗i ) = E[human capital|i, g∗i ]− C(q) (4.1)

The payoff obviously depends on the caste of the applicant because each caste has different

distributions of grades. It also depends on the cut-off g∗i as the cut off-determines whether

a student goes to college or not, which affects human capital.4 This payoff specification

is a fairly important constituent of this model, as it means that schools will change their

behaviour when affirmative action changes the likelihoods of students entering college, and

therefore their attractiveness to the school.

4.1.3 Sequence of Actions

The sequence of actions is as follows.

1. n people are born, with nature assigning each person a caste, H with probability λ and

L with probability 1− λ.
2It would be very easy to get heterogeneity in school quality via heterogenous costs. But here we want to

abstract from that kind of heterogeneity and focus on the heterogeneity arising from the incentives faced by
schools when they have to choose the student they must admit.

3Monks and Ehrenberg (1999) find that a college with a less favourable reputation (i.e. a low rank in the
U.S. News & World Report College Rankings) leads to the entering class being of lower quality in terms of
average SAT scores.

4Here we let the cut off grade depend on i as well, so that we do not have to rewrite this later when
affirmative action kicks in. Without affirmative action, we have g∗H = g∗L = g∗.
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2. One school (schools being indexed by i) is chosen at random and it chooses its quality qi

which is observed by all. This is repeated until all schools have chosen their qualities.5

3. Parents costlessly apply to all schools.6

4. Schools observe only caste7 (not a or p) and decide on a preferred ranking. This ranking

is used to make offers. The offer is first made to the candidate listed on the top, and if

he rejects, then the offer is made to the next candidate. This process repeats itself till

the seat is filled.

5. Parents choose which offer to take up.

6. Children undergo education at school and attain grades.

7. Colleges admit students based on the mechanical cut-off rule.

8. Those admitted undergo college education.

9. Payoffs are received.

Parents act on behalf of their children, and look to maximize k. This can be motivated

by love for one’s child, or more materialistic concerns such as having reliable support in old

age.

4.2 Results without Affirmative Action

The model described above is essentially an extensive form game with n+ 2 decision making

nodes. Only steps 2 (a composite of n steps), 4 and 5 in the sequence of actions described

above are decision making; the rest are mechanical. As with any extensive form game, we

use the Subgame Perfect Equilibrium concept and solve via backwards induction. But before
5One would think that the more intuitive way of modelling school quality choice would be to have schools

choose quality simultaneously. However, we have chosen sequential choice for two reasons. Firstly, as this is a
one shot game, simultaneous choice does not allow schools to react to changes in other schools’ qualities, thus
artificially eliminating competition. Sequential choice allows competition in a one shot game. Secondly, it is
closer to reality, where newer schools can observe the quality levels chosen by older schools.

6A variant of this model would have small applications costs, which would prevent parents from applying
everywhere. If applications costs are small enough, we would get H parents applying to the λn schools with
highest quality and L parents applying to the bottom (1 − λ)n schools in terms of quality. However, even
though this better simulates reality, it is an unnecessary complication that has no bearing on our results of
interest.

7In societies such as India, a person’s name is usually enough to give away his caste. So, this is not an
unreasonable assumption. This is also not a bad assumption if we divided our population according to race
instead of caste, as we would have to do in the case of countries like South Africa or several developed western
countries.
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doing so, we must derive results on the distribution of grades in a setting where q is allowed

to vary.

4.2.1 Distribution of Grades

We first have the following result which is analogous to Lemma 3.1.

Lemma 4.1. Grades for caste i are distributed according to the distribution function Fi(g; q) =

Ea [Bi (P (a; g, q))] where P (a; g, q) is implicitly defined by g = g(q, a, P (a; g, q), e).

Proof. Analogous to that of Lemma 3.1 except that since q varies, p as a function of a is also

parameterized by q in addition to g.

We now move on to first order stochastic dominance results on the distribution of grades.

Theorem 4.1. (i) FH(g; q) ≤ FL(g; q) ∀g; (ii) Fi(g; q′′) ≤ Fi(g; q′) when q′′ ≥ q′

Proof. For part (i), the proof is analogous to that of Theorem 3.1.

To prove part (ii), we proceed as follows. From Assumption 3.1 we know that g is

increasing in all its arguments. For any given level of g, if we increase q, we would need a

decrease in p to achieve the same g. Thus, we have q′′ ≥ q′ ⇒ P (a; g, q′′) ≤ P (a; g, q′). But

given the expression for Fi(g; q) we derived in Lemma 4.1, this means that Fi(g; q′′) ≤ Fi(g; q′).

As this holds for any level of g, this proves the result.

4.2.2 Best Response Strategies

We now move on to characterizing the best response strategies in steps 2, 4 and 5 of the game

through backward induction. For the purposes of the following derivations, let school j have

chosen quality qj .

Parents’ Acceptance of Offers

Lemma 4.2. Parents strictly prefer to accept an offer to not sending their child to school,

and they prefer offers from high quality schools to offers from low quality schools. They are

indifferent between offers from schools of same quality.

Proof. Recall that parents wish to maximize their child’s eventual human capital. To prove

the first part, we must assume (quite reasonably) that if a student does not go to school, he

cannot go to college. In such a setting, from Assumption 3.1 the child’s human capital is
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g(0, a, p, e) = 0. Since g is increasing in q, a parent will prefer to send his child to school, as

even if the child ends up not getting into college, his eventual human capital will be at least

as large as 0, given that quality is weakly positive.

To prove the second part, note that eventual human capital (given a g∗) is given by

θ(q) =

 g(q, a, p, e) if g < g∗

k(µ, g(q, a, p, e)) if g > g∗
(4.2)

Here, remember that the parent knows (a, p) for his child and e is constant. We know from

Assumptions 3.1 and 3.3 that g is increasing in q and that k is increasing in g. So, θ is

increasing in q. In other words, if school quality increases, the child’s return from a school

and a college education increases, and there is also an increased possibility that the child

will be able to go to college. So, a parent will prefer to accept an offer from a higher quality

school over an offer from a lower quality school.

It is also apparent that the payoff to the parent from accepting offers from schools with

the same quality is the same, hence he will be indifferent between such offers.

Schools’ Offers

Lemma 4.3. Schools will rank high-caste students above low-caste students, but within castes

the school is indifferent between students and will therefore rank them randomly.

Proof. We begin by noting that the school receives no information about applicants apart

from caste. So, the decision on ranking preference must be based only on caste. School j’s

expected payoff from enrolling an applicant of caste i can be rewritten as follows.

S(qj ; i, g∗i ) = P (student gets into college|i) · E[human capital|i, g∗i , gets into college]+

P (doesn’t get into college|i) · E[human capital|i, g∗i , doesn’t get into

college]− C(qj)

= (1− Fi(g∗i ; qj))

∫∞
g∗i
k(µ, g) dFi(g; qj)

1− Fi(g∗i ; qj)
+ Fi(g∗i ; qj)

∫ g∗i
0 g dFi(g; qj)
Fi(g∗i ; qj)

− C(qj)

= ḡi +
∫ ∞
g∗i

(k(µ, g)− g) dFi(g; qj)− C(qj)

(4.3)

Note that the first two terms together are exactly the same as k̃i (in equation 3.7), i.e. the

expected human capital for caste i. Just as before, it is now a simple exercise to integrate
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by parts and apply the stochastic dominance result (Theorem 4.1) to see that S(qj ;H, g∗) ≥

S(qj ;L, g∗).

Thus, a school would prefer to rank high-caste people above low-caste people, but within

a caste, expected payoff is the same, so schools are indifferent between applicants of the

same caste. Of course, given that the schools have chosen quality already, they can work out

through backward induction whether their first choice candidate will accept the offer or not,

but since making offers doesn’t cost anything, this should not deter schools from stating their

true preferred ranking.

Schools’ Quality Choice

Naturally, the schools look to maximize their expected payoff. In order to avoid uninteresting

equilibria like all schools choosing a quality of 0, or all schools indefinitely raising quality, we

must make the following regularity assumptions.

Assumption 4.3. (i) After some quality level, costs outweigh and increase faster than ben-

efits; (ii) for at least some range of quality S(qj ; i, g∗i ) > 0.

Part (i) ensures that limqj→∞ S(qj ; i, g∗i ) = −∞ and part (ii) ensures that there will be

a positive quality level where the school would want to function (i.e. choose a quality level

greater than 0).

Let us now find out what the expected payoff curves for high and low-caste students look

like, graphically. It is impossible to state the exact shape without specifying functional forms

for the distributions and human capital production functions. However, we can make the

following observations.

• From Assumption 3.1, S(0; i, g∗i ) = 0.

• From Assumption 4.3, there is some range over which S(qj ; i, g∗i ) > 0 and eventually

S(qj ; i, g∗i ) falls below 0 and tends to −∞ in the limit.

• From the proof of Lemma 4.3, S(qj ;H, g∗) ≥ S(qj ;L, g∗). This implies that expected

payoff curve given a high-caste student lies above the expected payoff curve given a

low-caste student for every quality level.

Keeping these broad parameters in mind, the expected payoff curves given high and low-caste

students can be drawn as in Figure 4.1. Here, we have drawn the curves so that the range
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Figure 4.1: Schools’ Quality Choice

for which S(qj ; i, g∗i ) > 0 occurs directly after 0; it need not be so. We must first note that

these curves are not ‘well behaved’, in the sense that they are not necessarily single peaked

or concave. It is important to understand why this is so, and why no simple assumption can

be invoked to rule this out. The expected payoff curve for caste i has the following slope.

∂S(qj ; i, g∗i )
∂qj

=−

[∫ g∗i

0
g
∂Fi(g∗i ; qj)

∂qj
dg + (k(µ, g∗i )− g∗i )

∂Fi(g; qj)
∂qj

+
∫ ∞
g∗i

k(µ, g)
∂Fi(g; qj)

∂qj
dg + C ′(qj)

] (4.4)

Also, from the proof of Lemma 4.1, we have

Fi(g; q) =
∫
a
Bi(P (a; g, q)) da⇔ ∂Fi(g; q)

∂q
=
∫
a
bi(P (a; g, q))

∂P (a; g, q)
∂q

da (4.5)

We know from the proof of Theorem 4.1 that ∂P (a;g,q)
∂q ≤ 0.8 Consider now a simple bell

shaped density function for bi(·). A low value of q would correspond to a high value of

P (a; g, q), which, in a bell shaped density would mean a small value of bi(P (a; g, q)), and so

a small negative value of ∂Fi(g;q)
∂q . However, it is entirely reasonable that C ′(q) is low enough

here for the slope to be positive. It is also reasonable that as we increase q, C ′(q) increases
8Since we know that bi(P (a; g, q)) ≥ 0, this confirms our result in Theorem 4.1 that Fi(g; q) is decreasing

in q.
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but the reduction in P (a; g, q) does not translate into a massive increase in bi(P (a; g, q)) (as

we could still be in the right tail), and thus ∂Fi(g;q)
∂q does not turn significantly more negative.

Thus the slope turns negative. Now, when we increase q enough for us to move into the

middle of the distribution, then we have a large bi(P (a; g, q)) leading to a large negative
∂Fi(g;q)
∂q . It could be large enough to overtake C ′(q), and the slope could turn positive again.

This would undoubtedly lead to at least two peaks.

However, our results are invariant to this ‘misbehaviour’; they would be exactly the same

with single-peaked concave expected payoffs.

Next, we must note that these curves are in actuality upper and lower bounds of a family

of curves, which represent the schools’ expected utility when it may admit a high or low-

caste applicant with some probability combination. The higher the probability of admitting

a high-caste student, the closer would the curve be to the upper bound. As is depicted in

Figure 4.1, call the quality levels where S(qj ;L, g∗) and S(qj ;H, g∗) are maximized qB and

q0 respectively. Also, call the quality level where S(qj ;H, g∗) goes below maxS(qj ;L, g∗) for

the last time qG.

Lemma 4.4. The schools’ best response strategies are as follows.

(i) For each of the last λn schools, if there already λn schools at or above quality qG, it

chooses qB. Else, it chooses the quality arg maxq∈Q S(q;H, g∗) where Q is the set of values

of q that guarantee the school a place in the final top λn.

(ii) For each of the first (1− λ)n schools, if there are already λn schools at or above quality

qG, then it chooses qB, else it chooses qG.

Proof. We first establish that, given Lemmas 4.2 and 4.3, a school must be in the top λn in

terms of quality to ensure that it gets an H student. This can be seen as follows. All schools

will place H students above L students in their rankings. So all schools will first make offers

to H students. As H students have first choice, they will accept the highest quality offer

made to them. It is then easy to see that the H students will be distributed among the top

λn schools.

Now consider the decision of the last school to be drawn. The other n − 1 schools have

already chosen their qualities. The school knows that there are λn H students, and that if it

chooses a quality that puts it in the top λn, it is guaranteed an H student. Now, if the lowest

quality among the top λn till then is less than qG, then it is possible, by choosing a higher

value, to attract an H student and get a payoff that is greater than the maximum payoff
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from obtaining an L student. However, if the lowest quality among the previous top λn is

at or beyond qG, then by choosing a higher quality (and thereby attracting an H student) it

gets a lower expected payoff than if it chooses qB and settles for an L student.

Note the special case where the lowest of the previous λn is exactly qG. It is clear that

the school would not want to chose a quality greater than qG, but it will also not want to

choose a quality equal to qG. This is because doing so would mean that there is no distinct

top λn, and so it will receive an H student with some probability, which could place it on a

lower curve and give it a payoff strictly lower than it would get if it chose qB.

We now move to the (n − 1)th school to be drawn. It knows that the last school will

definitely choose a quality up to qG in a bid to attract an H student. Thus, in order to ensure

that it finishes in the final top λn and gets an H student, it must ensure that its quality

choice places it in the top (λn− 1) out of (n− 1). If, however, the lowest of the previous top

(λn− 1) is at qG, then it should choose qG as well, since it knows that the next school when

faced with the situation will chose qB. If, however, there are already λn schools at or above

qG, then it does best to choose qB, by the earlier argument.

A similar pattern carries on with the (n− 2)th school wanting to be in the top (λn− 2)

and so on until the (n − λn)th school. Consider the case when the lowest of the previous

top λn is less than qG. This school knows that there are λn schools to come after it, so if

it chooses a quality less than qG the subsequent schools will surely end up choosing qualities

higher. The only way it can guarantee getting an H student is by choosing qG, as it knows

that then the subsequent (λn − 1) schools would all also choose qG and the last one would

choose qB. If, however, there are already λn schools at qG or beyond, then it would choose

qB as before. This reasoning holds for the rest of the chain right up to the first school.

4.2.3 Characterizing the Equilibrium

Theorem 4.2. In equilibrium,

(i) the first λn schools choose quality qG.

(ii) the last (1− λ)n schools choose quality qB.

(iii) every school ranks H applicants above L applicants while making offers, but randomizes

within applicants from the same caste.

(iv) all H students are randomly distributed among good quality schools and all L students

among bad quality schools.



CHAPTER 4. DIFFERENCES IN SCHOOL QUALITY 30

Proof. Given the best response strategies derived in Lemmas 4.2, 4.3 and 4.4, the result

immediately follows.

To verify that this is an equilibrium, we can check that at no stage would an agent like

to deviate. In step 2, consider any of the first λn schools. It is plain from looking at Figure

4.1 that raising quality would mean a lower payoff and lowering quality would mean getting

a low-caste student for sure (thus placing it on the lower curve), as given the best response

strategies the (λn + 1)th school would choose quality qG, thus excluding it from the top λn

schools. The best deviation is to choose qB, which gives it the same payoff as it gets by

choosing qL.

For any of the last (1 − λ)n schools, being on the lower curve is certain given that the

first λn have chosen qH . Then, it is apparent that any deviation will bring a strictly lower

payoff than choosing qL.

In step 4, any of the first λn schools gets a strictly lower payoff from by offering a seat

to an L candidate before an H candidate (as then with a certain probability it will get an L

student) while any of the last (1− λ)n get the same payoff (as it cannot hope to ever attract

an H student).

In step 5, it is clear that a parent would do worse by accepting an offer from a bad quality

school over one from a good quality school.

4.2.4 The Cut-Off Grade

The admissions rule is the same as in the baseline model, but the distribution of grades is

slightly different (from Lemma 4.1). The probability that a student of caste i going to school

with quality qj attains the cut-off grade g∗ is Fi(g∗; qj). Since we know that all H students go

to good quality schools and all L students go to bad quality schools, the admissions equation

may be written as

[(1− FH(g∗; qG))λ+ (1− FL(g∗; qB)) (1− λ)]n = Ā (4.6)

Theorem 4.3. In the differences in school quality model, without affirmative action, the H

community is over-represented at the college level.

Proof. From Theorem 4.1, 1− FH(g∗; qG) ≥ 1− FL(g∗; qG) ≥ 1− FL(g∗; qB).
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4.2.5 Realized Human Capital

Analogous to the baseline model, average human capital for community i given a cut-off grade

g∗ is

k̃i = ḡi +
∫ ∞
g∗

(k(µ, g)− g) dFi(g; qj)

where ḡi =
∫ ∞

0
g dFi(g; qj)

and j =

 G if i = H

B if i = L

(4.7)

Lemma 4.5. The distribution of realized human capital is unequal with k̃H ≥ k̃L.

Proof. This may be seen by integrating by parts and applying Theorem 4.1.

Average human capital in the economy is now given by

k̃ = ḡ +
[
λ

∫ ∞
g∗

(k(µ, g)− g) dFH(g; qG) + (1− λ)
∫ ∞
g∗

(k(µ, g)− g) dFL(g; qB)
]

where ḡ = λḡH + (1− λ)ḡL

(4.8)

This is analogous to the baseline model.

4.3 Affirmative Action

As earlier, affirmative action involves the choosing of two cut-off grades, g∗H and g∗L for the

low and high-castes respectively, such that there is equal representation in college. Let us first

examine the impact of this on the best response strategies, and then on realized outcomes.

4.3.1 Best Response Strategies

Parents’ Acceptance of Offers

Lemma 4.6. Affirmative action does not change parents’ strategies in accepting offers. The

strategies are the same as given in Lemma 4.2.

Proof. The probability of getting into college does not enter the proof of Lemma 4.2. The

only difference with respect to that proof is that g∗ is replaced by g∗i .
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Schools’ Offers

We first see what happens to S(qj ; i, g∗i ) as g∗i changes.

Lemma 4.7. S(qj ; i, g∗i ) rises as g∗i falls and vice versa.

Proof. Differentiating equation 4.3 with respect to g∗i , we get

∂S(qj ; i, g∗i )
∂g∗i

= − [k(µ, g∗i )− g∗i ] fi(g∗i ; qj) < 0 (4.9)

The last inequality follows from Assumption 3.3.

So, if g∗H ≥ g∗ ≥ g∗L, the expected payoff curve for the L people moves up at every point

and that for the H people moves down at each point. If the schools choose the same quality,

then we can prove that S(qj ;H, g∗H) ≥ S(qj ;L, g∗L) ∀qj . The proof is exactly the same as that

for the last part of Theorem 3.3. However, in this model, schools chose two different quality

levels without affirmative action. It is conceivable that, if the L people all end up going to

bad quality schools, the cut-off grade for them would have to fall very low in order to achieve

equal representation. Then it may be more profitable for a good quality school to take an

L candidate in, given that, with the high quality schooling and the low cut off grade, the

candidate is almost sure to get into college, and may end up having higher expected human

capital than an H candidate for whom the cut-off is really high.

Thus, we could have situations when certain schools would prefer to rank L students

above H students. We know from previous analysis that the equilibrium is determined by

the lower maximum and the rightmost point on the other curve that corresponds to the same

level of expected payoff. If the lower maximum is that of the L curve, call the quality level

where S(qj ;L, g∗L) is maximized q′B, and call the quality level where S(qj ;H, g∗H) goes below

maxS(qj ;L, g∗L) for the last time q′G. If, however, the lower maximum is that of the H curve,

call the quality level where S(qj ;H, g∗H) is maximized q′′G, and call the quality level where

S(qj ;L, g∗L) goes below maxS(qj ;H, g∗H) for the last time q′′B. With these definitions, we can

have the following four configurations, which are depicted in Figure 4.2.

1. maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L) and q′G ≥ q′B.

2. maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L) and q′G ≤ q′B.

3. maxS(qj ;H, g∗H) ≤ maxS(qj ;L, g∗L) and q′′G ≤ q′′B.
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4. maxS(qj ;H, g∗H) ≤ maxS(qj ;L, g∗L) and q′′G ≥ q′′B.
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(c) Case 3

 
 

 

 

 

  

 

(d) Case 4

Figure 4.2: Possible Configurations of Expected Payoff Curves After Affirmative Action

We will only discuss the first in detail, as the rest have a similar mode of analysis and the

first case gives the most intuitive and realistic result.

In the first case, we know that at least at quality q′G schools will rank H students over L

students. A more detailed depiction of Case 1 in relation the the situation without affirmative

action is provided in Figure 4.3. The way we have drawn it, the schools with quality q′B also

prefer to rank H students over L students, but we can conceive of examples where this ranking

could be reversed, though it will make no difference to the outcome.

Schools’ Quality Choice

Lemma 4.8. The schools’ best response strategies do not change due to affirmative action.

The strategies are as given in Lemma 4.4, with qB and qG being replaced by q′B and q′G

respectively.

Proof. Given that maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L) and q′G ≥ q′B, we know that at least
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Figure 4.3: Schools’ Quality Choice Under Affirmative Action

over a range of qj , H students give a higher payoff. We also know that in order to attract

H students a school must be in the top λn and must rank H students over L students. The

proof is therefore similar in all respects to that of Lemma 4.4, because we know at q′G schools

will rank H students above L students.

4.3.2 Characterizing the Equilibrium

Theorem 4.4. In equilibrium,

(i) the first λn schools choose quality q′G.

(ii) the last (1− λ)n schools choose quality q′B.

(iii)(a) the top λn schools rank H applicants above L applicants while making offers, but

randomize within applicants from the same caste.

(iii)(b) if (as in Figure 4.3) S(q′B;H, g∗H) ≥ S(q′B;L, g∗L), the last (1 − λ)n schools rank H

applicants above L applicants; if S(q′B;H, g∗H) ≤ S(q′B;L, g∗L), the last (1−λ)n schools rank L

applicants above H applicants. Whatever the ranking between castes, the within caste ranking

is random.

(iv) all H students are randomly distributed among good quality schools and all L students

among bad quality schools.

Proof. Given that maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L) and q′G ≥ q′B, the result follows from
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Lemmas 4.6 and 4.8. We can also verify the equilibrium by checking that at no stage would

any stage like to deviate, which can be done exactly as in the proof of Theorem 4.2

4.3.3 The Cut-Off Grades

Given the equilibrium characterization, the equal representation condition becomes

1− FH
(
g∗H ; q′G

)
= 1− FL

(
g∗L; q′B

)
(4.10)

The admissions constraint becomes

[(
1− FH

(
g∗H ; q′G

))
λ+

(
1− FL

(
g∗L; q′B

))
(1− λ)

]
n = Ā (4.11)

Together, equations 4.10 and 4.11 determine g∗H and g∗L.

Lemma 4.9. If the new school qualities are ‘close enough’ to the old ones, affirmative action

leads to a rise in the cut-off for H students and a fall for L students.

Proof. Without affirmative action, from Theorem 4.3, we have 1−FH (g∗; qG) ≥ 1−FL (g∗; qB).

In order to move from such a situation to equal representation, the probability of a H stu-

dent getting in must fall and that of an L student getting must rise. Se we would need

1− FH (g∗H ; q′G) ≤ 1− FH (g∗; qG) and 1− FL (g∗L; q′B) ≥ 1− FL (g∗; qB). From Theorem 4.1,

we know that 1− FH (g∗; qG) ≥ 1− FH (g∗H ; q′G), and so if q′G is not ‘too far’ below qG, then

1−FH (g∗H ; q′G) ≤ 1−FH (g∗; qG) would imply g∗H ≥ g∗. Similarly, if q′B is not ‘too far’ above

qB, then g∗L ≤ g∗.

4.3.4 What Happens to School Quality?

Good Quality Schools

Theorem 4.5. Good quality schools necessarily undergo a reduction in quality as a result of

affirmative action.

Proof. We know from Lemma 4.7 that if the cut-off for H students rises, the expected payoff

curve moves down at every point. Also, if the cut-off for L students falls, the expected payoff

curve moves up at every point. The quality choice of the good quality schools is determined

by drawing a straight line through the maximum of the expected payoff curve given an L
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student and seeing where it intersects the expected payoff curve given an H student for the

last time. Since the lower curve moves up, so does its maximum and the straight line through

it. The last intersection of this line with the original higher curve is then necessarily at a

lower quality level than previously, as at the last intersection the higher curve is negatively

sloped (it must reach −∞ at extremely high quality levels). But the higher curve also moves

down, so the last intersection with the new higher curve must be at an even lower quality

level.

Intuitively, this must be interpreted as follows. Affirmative action makes L students more

profitable, so the top λn schools are less willing to compete for H students. Also, H students

become less profitable as it is less likely that they will get into college.

A Monotone Comparative Statics Result

We now move to the effect on the quality of bad quality schools. Since the quality of these

schools is determined by the maximum of the expected payoff curve for L applicants, we

must determine how this maximum moves as a result of affirmative action. To do this, we

appeal to the following version of a standard monotone comparative statics result, which can

be found in Milgrom and Shannon (1994).

Lemma 4.10. Let X be a lattice, let T be a partially ordered set and let the function f :

X × T → R have the following properties:

(i) ∀t ∈ T , f(·, t) is quasi-supermodular (QSM) in x.

(ii) f(x, t) has single crossing differences (SCD) from negative to positive.

Then arg maxx∈X f(x, t′′) ≥ arg maxx∈X f(x, t′) if t′′ > t′. The converse holds if the SCD is

positive to negative.

Proof. See Milgrom and Shannon (1994).

In order to be able to understand and consequently apply this result, we need to go

through the following definitions of the key terms involved.

A set (S,≥) is a partially ordered set if the following hold ∀x, y, z ∈ S

1. x ≥ x (reflexivity)

2. x ≥ y & y ≥ x⇒ x = y (anti-symmetry)

3. x ≥ y & y ≥ z ⇒ x ≥ z (transitivity)



CHAPTER 4. DIFFERENCES IN SCHOOL QUALITY 37

An element a ∈ S is an upper bound (lower bound) of S′ ⊆ S if a ≥ (≤)s′ ∀s′ ∈ S′.

a∗ is the least upper bound / supremum (greatest lower bound / infimum) of

S′ ⊆ S when a∗ is an upper bound (lower bound) of S′ and for any other upper bound (lower

bound) of S′, say ā, a∗ > (<)ā.

A partially ordered set (S,≥) is a lattice if every two element subset of S has an infimum

and a supremum.

A function f : X → R is QSM if f(x) − f(x ∧ x′) ≥ 0 ⇒ f(x ∨ x′) − f(x′) ≥ 0 where

f(x ∧ x′) is the infimum and f(x ∨ x′) is the supremum of x and x′.

A function f : X × T → R has SCD if whenever x′′ > x′, the function g(t) = f(x′′, t)−

f(x′, t) has the single crossing property, i.e. it crosses 0 only once, from negative to positive.

It is apparent that a sufficient condition for SCD to be satisfied is for f to have increasing

differences (ID), or for g(t) to be increasing in t. It can also be shown that if X ⊆ Rl and

T ⊆ Rk then f(x, t) has ID if

∂2f

∂xi∂tj
≥ 0 ∀i = 1, . . . , l, j = 1, . . . , k (4.12)

If this inequality is reversed, we get decreasing differences, which corresponds to SCD when

g(t) crosses 0 only once, but from positive to negative.

Here, x is the set of choice variables and t is the set of parameters. The result says that

the value of X that globally maximizes f is increasing in the parameters t provided two

technical conditions (QSM and SCD) are met. Note, the result does not rely on continuity

or concavity.

Bad Quality Schools

We are now in a position to apply this result to find out how affirmative action affects the

quality of the bad quality schools.

Theorem 4.6. If ∂fL(g;qj)
∂qj

≤ 0 in the vicinity of g∗, quality will fall or stay constant as a

result of affirmative action. If the opposite holds, quality will rise.

Proof. We get this result by applying Lemma 4.10 to the expected payoff function given an

L student. In order to do so, we first note that our choice variable is qj ∈ R+, and we take

our parameter set to be the cut-off grade. We treat the cut off grade as a variable ĝ ∈ R+,

which takes the values g∗ without affirmative action and g∗L with affirmative action. Then,
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S(qj ;L, ĝ) : R+×R+ → R as required by Lemma 4.10. Moreover, we observe that R+ satisfies

the properties of both a lattice and, defining ‘≥’ as the euclidian relation, a partially ordered

set.

Now, we need to check the two conditions of QSM and SCD. However, any function where

the set of choice variables is scalar is always QSM in that variable. This can be easily verified

by checking that the conditions of QSM are satisfied.

Thus, we only need to check SCD, but we know that a sufficient property for that is ID,

which implies
∂2S(qj ;L, ĝ)

∂qj∂ĝ
≥ 0

⇔ − (k (µ, ĝ)− ĝ)
∂fL (ĝ; qj)

∂qj
≥ 0

⇔ ∂fL (ĝ; qj)
∂qj

≤ 0

(4.13)

Here, we know that k(µ, g)−g > 0 from Assumption 3.3. We also know that initially, without

affirmative action, ĝ = g∗, so we must have fL (g; qj) decreasing in qj in the vicinity of g∗ for

SCD to hold. Now, a straightforward application of Lemma 4.10 tells us that if this condition

holds, school quality will move in the same direction as the cut-off grade.

The intuition behind this result can be gained with the help of Figure 4.4. Take for sim-

  

 

  

  

 

Figure 4.4: The Effect of fL(g, qj) on School Quality
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plicity a single peaked density functionfL(g; qj) at some quality q′j . If we let quality increase

to q′′j , we know from Theorem 4.1 that the new distribution will stochastically dominate the

old one. So the curve would move in a manner similar to the way shown in the diagram.

There will be some grades that will experience an increase of probability mass (like g1),

whereas some will experience a decrease (like g0).

Now, if the cut-off grade is at g1, then an increase in quality will increase the probability

mass around the cut-off grade. If this happens, then the reduction in cut-off caused by

affirmative action will increase the probability of the student getting into college much faster.

However, if the cut-off is at a point where an increase in quality reduces probability mass

(like g0), then an increase in quality reduces the effectiveness of a falling cut-off in increasing

the probability of getting into college. The incentive here is to reduce quality to again put

more mass in the vicinity of the cut-off, so as to take maximum advantage of the fact that the

cut-off is decreasing. Thus, schools adjust quality to put more people in the vicinity of the

cut-off, so as to better exploit the effect that a falling cut-off has in increasing the prospects

of the students getting in to college.

4.3.5 Realized Human Capital

Theorem 4.7. The distribution of human capital is still unequal despite affirmative action.

Moreover, it is ambiguous whether inequality in human capital is reduced; under certain

conditions it may increase.

Proof. Remember we are still dealing with the case where maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L)

and q′G ≥ q′B. If we look at the extreme where q′G = q′B, then we can show in a manner

analogous to the proof of Theorem 3.3 that inequality still persists. Then we note that k̃L is

decreasing in school quality (this can be easily verified through differentiating and using the

first order stochastic dominance result, Theorem 4.1), and so if the quality of bad schools

is less than q′G the average realized human capital will be less, which would increase the

inequality. This proves the first statement.

To prove the second statement, we note that, firstly, average human capital for H people

unambiguously falls as school quality reduces and it is more difficult to get into college as
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the cut off has increased. Formally,

k̃AAH − k̃H =
∫ ∞

0

(
FH(g; qG)− FH(g; q′G)

)
dg +

[
(k(g∗H , µ)− g∗H)(1− FH(g∗H ; q′G))

− (k(g∗, µ)− g∗)(1− FH(g∗; qG))]−
∫ g∗H

g∗
(k(µ, g)− g) dFH(g; qG)

+
∫ ∞
g∗H

(kg − 1)
(
FH(g; qG)− FH(g; q′G)

)
dg

≤ 0

(4.14)

Here, we have used Theorem 4.1 and Assumption 3.3, and we know that q′G < qG. Secondly,

we note that the effect on effect on average human capital for L people is ambiguous, because

even though the probability of getting into school increases (which has the effect of increasing

human capital), it is possible for school quality to decrease (which would lower human capital).

Indeed, if school quality decreases enough, it may more than offset the increase due to the

lowering of the cut-off grade, thus increasing inequality.

We can say though, that if bad school quality increases, then human capital for L will

increase, leading to a reduction in inequality. This can be shown formally similarly to the

high-caste case.

Theorem 4.8. The effect on economy-wide average human capital is ambiguous. Under

certain conditions, it may increase.

Proof. This result should be obvious given what we seen done so far. If bad school quality

increases drastically, it is possible for the L people’s human capital to increase enough to

outweigh the fall in human capital experienced by the H people. However, it is also pos-

sible for economy-wide capital to reduce if bad school quality increases only moderately or

decreases.

4.3.6 Other Cases

Thus far we have analyzed the case where maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L) and q′G ≥ q′B.

We now move to a brief description of the outcomes in the other cases.

Case 2: maxS(qj ;H, g∗H) ≥ maxS(qj ;L, g∗L) and q′G ≤ q′B

In this case, following the method of analysis we have used previously, it is easy to see that

the first λn schools will choose q′G in hope of attracting an H candidate and the rest will



CHAPTER 4. DIFFERENCES IN SCHOOL QUALITY 41

choose q′B. However, since q′G ≤ q′B, the applicants will accept offers from the schools that

have q′B first. Moreover, at q′B, the expected payoff from a low-caste applicant is higher

than that from a high-caste applicant, leading to these schools ranking L students above H

students. So, all H students go to schools with quality q′G and all L students go to schools

with quality q′B.

This result is perverse, in that low-caste people end up going to better quality schools than

their high-caste counterparts, which is against the real world experience. So, even though it

may theoretically be possible for this to happen, the exact specifications of the distribution

functions and the human capital production functions it would require to happen would have

to be unrealistic.

Case 3: maxS(qj ;H, g∗H) ≤ maxS(qj ;L, g∗L) and q′′G ≤ q′′B

Here, the first (1 − λ)n schools would choose q′′B in a bid to attract an L student and the

rest would choose q′′G. All L students would go to schools with quality q′′B and all H students

would go to schools with quality q′′G.

Again, this implies that L students go to better quality schools.

Case 4: maxS(qj ;H, g∗H) ≤ maxS(qj ;L, g∗L) and q′′G ≥ q′′B

Here again, the first (1 − λ)n schools would choose q′′B in a bid to attract an L student and

the rest would choose q′′G. However, at q′′G, the expected payoff from an H candidate is higher

than that from an L candidate. Also, applicants will accept offers from schools with quality

q′′G first since q′′G ≥ q′′B. All H students end up going to schools with quality q′′G and all L

students to schools with quality q′′B.

In this case, H students go to better quality schools, but what is strange is that the

schools that enter first are competing for L students. This case may not be as implausible as

the previous two, and the remaining analysis is fairly similar to what we have done earlier,

except that it is no longer certain that the better quality schools are of a lower quality with

affirmative action. Also, whereas without affirmative action it is the first λn schools that

become high quality, with affirmative action it is the last λn that become high quality.
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4.4 Summary of Main Results

In this chapter, we introduced schools as economic agents by allowing them to choose their

quality. We argued that schools care about the eventual human capital attained by their

students, and so indirectly about whether they made it to college. We also assumed that

schools could only view the caste of potential applicants. We found that the initial schools

to enter bid quality up to a very high level in order to attract high-caste students, while the

entrants towards the end settled for low-caste students and chose a low quality level. As a

result, we again had the high-caste grade distribution first order stochastically dominating

the low-caste distribution. Realized human capital was also unequal, resulting in this model

from the statistical distribution practiced by schools in addition to high-caste parents being

generally richer and the high-caste over-representation at college.

With affirmative action, we argued that good quality schools would always reduce quality

as high-caste students become less attractive. The incentives facing bad quality schools were

more complicated, and we concluded that these schools would change quality in the direction

that led to more people being placed in the vicinity of the cut-off. Thus, we observed that

affirmative action could lead to a universal decline in school quality. We also showed that

affirmative action did not erase inequality, and we noted the possibility of an increase in

inequality under certain circumstances.



Chapter 5

Effort Choice

Thus far we have treated the objects of affirmative action, i.e. the students, as inanimate.

Here, we recognize students as economic agents who choose how hard to work given an

admissions regime. Although the question of effort incentives has not been a part of the

public debate on affirmative action, the issue is important, as it could have crucial effects on

human capital levels, and hence have implications for inequality. Here, we build a model to

illustrate how effort levels are chosen by students, and what the effect of affirmative action

on that choice is. As our outcome variables, we shall focus on, in addition to the human

capital variables, effort and welfare.

5.1 Model Set Up

5.1.1 School Education, College Education and Individual Characteristics

We retain the same definitions of g(q, a, p, e), k(µ, g) and H(a, p) used in Chapter 3, obeying

Assumptions 3.1, 3.3 and 3.4. However, we now abstract from variations in school quality

and allow e to vary, so we have the following simplifying assumption.

Assumption 5.1. q is non-stochastic and constant across the population.

We also make the following separability assumption on g(q, a, p, e).

Assumption 5.2. a and p enter into g(q, a, p, e) in a way that allows us to define a variable

τ = t(a, p) increasing in both its arguments such that g(q, a, p, e) = g̃(q, t(a, p), e).

As a simple example, if we have g = qape, then we would have τ = ap and g̃ = qτe. τ

may be viewed as a measure of a student’s ‘educability’. We do this to condense the variation

43
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of individual characteristics into one variable, which will allow us to draw two-dimensional

diagrams. This assumption is not crucial, but without it we would have to draw three-

dimensional diagrams, and since diagrammatic analysis is central to this model, it is felt that

simple two-dimensional diagrams are essential to clearly convey ideas. Note, it is important

(though non-crucial) that we specify that τ is increasing in its arguments so as to ensure that

g̃ is increasing in τ and hence simplify the consequent analysis.

5.1.2 Students as Agents

In this model, the focus will be on effort choice, and thus the most interesting agents are the

students. We assume that students choose an effort level e.

Assumption 5.3. Costs of effort1 are continuous, twice differentiable and homogeneous

across students at C(e) with C(0) = 0, C ′(e) > 0 and C ′′(e) > max
{
∂2g̃
∂e2

, ∂k
∂g̃

∂2g̃
∂e2

+
(
∂g̃
∂e

)2
∂2k
∂g̃2

}
.

The last condition is simply that costs are more convex than both g̃ and k, which is

required to ensure an interior solution for effort.

Regarding payoffs to the students, we assume that the benefit to the students is simply

the final level of human capital they end up with. We can thus define a payoff function S(e; τ)

for the students2 where

S(e; τ) =

 g̃(q, τ, e)− C(e) if student doesn’t go to college

k(µ, g̃(q, τ, e))− C(e) if student goes to college
(5.1)

Note, the students are assumed to know the value of τ and can observe the value of q, so

they know the value of their payoff with certainty; we need not get into expectations as in

Chapter 4.

5.1.3 Sequence of Actions

The sequence of actions is as follows.

1. n people are born, with nature assigning each person a caste, H with probability λ and

L with probability 1− λ.

2. Children are admitted to school.
1This function should not be confused with the cost of investment in school quality function in Chapter 4.
2This should, again, not be confused with the schools’ payoff function in Chapter 4.
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3. Students choose an effort level e at cost C(e).

4. Students undergo education and attain grades.

5. Colleges admit students based on the mechanical cut-off rule.

6. Those admitted undergo college education.

7. Payoffs are received.

Here, we end up with only one interesting decision node to analyze, namely the students’

choice of effort.

5.2 Results Without Affirmative Action

5.2.1 Results on τ

Lemma 5.1. g̃(q, τ, e) is increasing in τ , and all cross derivatives are positive.

Proof. We know that

g(q, a, p, e) = g̃(q, τ, e) (5.2)

where τ = t(a, p). Differentiating with respect to a, we get

∂g

∂a
=
∂g̃

∂τ

∂τ

∂a
(5.3)

We know that ∂g
∂a > 0 from Assumption 3.1. We also specified that τ is increasing in its

arguments, so we know ∂τ
∂a > 0. Thus, we must have ∂g̃

∂τ > 0. This proves the first claim.

To prove the second claim, we differentiate equation 5.3 with respect to e to get

∂2g

∂e∂a
=
∂τ

∂a

∂2g̃

∂e∂τ
(5.4)

Again, we know from Assumption 3.1 that ∂2g
∂e∂a > 0, so we must have ∂2g̃

∂e∂τ > 0. We can

similarly prove that ∂2g̃
∂q∂τ > 0. To see that ∂2g̃

∂e∂q > 0, we simply differentiate equation 5.2 with

respect to both e and q.

We now consider results on the distribution of τ .

Lemma 5.2. τ for caste i is distributed according to the distribution function Fi(τ) =

Ea [Bi(P (a; τ))] where P (a, τ) is implicitly defined by τ = t(a, P (a; τ)).
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Proof. Analogous to that of Lemma 3.1, except that we take τ = t(a, p) as the starting point

instead of the grades function. However, we do appeal to the grades equation to show that

P (a, τ) is a decreasing function.

We now move on to a first order stochastic dominance result for τ .

Theorem 5.1. FH(τ) ≤ FL(τ) ∀τ

Proof. Analogous to that of Theorem 3.1, with g being replaced by τ .

5.2.2 Solving for Optimal Effort

Solving for the optimal e for every value of τ is not a simple optimization exercise, for the

choice of e may determine whether the student goes to college or not and hence alters the

functional form of the student’s objective function. This discontinuity arises due to rationing

of college seats and has important effects for decision making, as we shall see. It is arguably

an extremely important feature of most educational systems around the world.

One way to deal with the discontinuity in the student’s payoff function is as follows. We

first find the optimal e while imposing the constraint that the student must make it to college,

so that we can work with a single functional form of the objective function k(µ, g̃(q, τ, e))−

C(e). Then we carry out the same exercise while imposing the constraint that the student

does not make it to college, so that we can work with the functional form g̃(q, τ, e)−C(e) of

the objective function. This will give us two choices of e for each τ , one corresponding to not

getting into college and the other to getting into college. We can then compare the resultant

payoffs and choose the e that corresponds to the higher payoff.

Step 1: Obtaining Two e’s for Each τ

Lemma 5.3. The optimal effort schedule constrained by making it to college is given by eC(τ)

which is defined by

g̃(q, τ, eC(τ)) = g∗ when τ ≤ τ0
∂k
∂g̃

∂g̃(q,τ,eC(τ))
∂e − C ′(eC(τ)) = 0 when τ ≥ τ0

(5.5)

where τ0 is defined by the intersection of the two functions in 5.5.

The optimal effort schedule constrained by not making it to college is given by eN (τ) which
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is defined by
∂g̃(q,τ,eN (τ))

∂e − C ′(eN (τ)) = 0 when τ ≤ τ1

g̃(q, τ, eN (τ)) = g∗ when τ ≥ τ1
(5.6)

where τ1 is defined by the intersection of the two functions in 5.6.

Proof. First note that, given a cut-off grade g∗, in order to get into college, a student would

need to score at least g∗. Similarly, to not make it, we must restrict the student to grades

below g∗. The equation

g̃(q, τ, e) = g∗ (5.7)

implicitly defines e as a function of τ , and gives the locus of all e − τ combinations that

correspond to achieving the cut-off grade. This will be a decreasing function, as g̃ is increasing

in all its arguments. This can also be seen by implicitly differentiating treating e as a function

of τ to give
∂e

∂τ
= −

∂g̃
∂τ
∂g̃
∂e

< 0 (5.8)

To the above and right of this function, the student scores more than g∗; and below and to

the left of this function, the student scores less than g∗. This function then divides the space

into two parts, one where the student makes it to college and one where he doesn’t. Call this

function GG

Next, we maximize each objective function. First, given the ‘not making it to college’

objective function, the optimal choice of effort satisfies

argmax
e

{g̃(q, τ, e)− C(e)} ⇒ ∂g̃(q, τ, e)
∂e

− C ′(e) = 0 (5.9)

This again implicitly defines e as a function of τ . To see what this function looks like, we

note that at τ = 0, we must necessarily have e = 0, as g̃(q, 0, e) = 0 from Assumption 3.1 and

so the only way to maximize the objective function is to minimize costs by choosing e = 0.

Also, the function is upward sloping, which can be seen by implicit differentiation to get

∂e

∂τ
=

∂2g̃
∂e∂τ

C ′′(e)− ∂2g̃
∂e2

> 0 (5.10)

This inequality holds because we know from Assumption 3.1 that all cross derivatives of g̃

are positive, and from Assumption 5.3 that costs increase faster than human capital, which

in turn increases faster than grades by definition. Call this function NN .
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Next, we repeat this exercise with the ‘making it to college’ objective function. The

optimal choice of effort satisfies

argmax
e

{k(µ, g̃(q, τ, e))− C(e)} ⇒ ∂k

∂g̃

∂g̃(q, τ, e)
∂e

− C ′(e) = 0 (5.11)

This again implicitly defines e as a function of τ , and starts at the origin for the same reason

as above. This will also always lie above NN because we know from Assumption 3.3 that

∂k
∂g̃ ≥ 1, which means that for any given τ , the optimal choice of effort be higher than in NN .

The slope of this function is ambiguous, as implicit differentiation gives

∂e

∂τ
=

∂k
∂g̃

∂2g̃
∂τ∂e + ∂2k

∂g̃2
∂g̃
∂e

∂g̃
∂τ

C ′′(e)− ∂k
∂g̃

∂2g̃
∂e2
−
(
∂g̃
∂e

)2
∂2k
∂g̃2

(5.12)

We know that the denominator is positive from Assumption 5.3, and that all the terms in

the numerator save ∂2k
∂g2

are positive from Assumptions 3.1 and 3.3. This means that unless

k is extremely concave in g, the slope will be positive. In drawing the function as positively

sloped, we are implicitly assuming that k is not too concave in g. Indeed, given that k must

always increase faster than grades, it is difficult to see how it is possible for k to be extremely

concave. Call this function CC.

We can graph GG, NN and CC to get Figure 5.1. We can now carry out our analysis

as outlined earlier. For the student to go to college, he must be above and to the right of

GG. For τ ≥ τ0, the constraint of getting into college is not binding and the optimal choice

of effort is given by CC. However, for τ ≤ τ0 the constraint is binding. Our assumptions

on C(e) imply ∂2S(e;τ)
∂e2

< 0, which means that payoff decreases the further away we get from

CC for any given τ . Thus, best the student can do is to choose a level of effort that just gets

him into college. This gives us the optimal effort schedule constrained by getting into college

eC(τ), which is shown by a thick line. A similar logic will give us eN (τ).

Step 2: Comparing Payoffs at Each e to get the Optimal Payoff Schedule

Lemma 5.4. The optimal payoff schedule is given by

Ŝ(τ) =

 S(eN (τ), τ) = g̃(q, τ, eN (τ))− C(eN (τ)) when τ ≤ τ∗

S(eC(τ), τ) = k(µ, g̃(q, τ, eC(τ)))− C(eC(τ)) when τ ≥ τ∗
(5.13)
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Figure 5.1: Obtaining Two e’s for Each τ

where τ∗ is defined by the intersection of the two functions in 5.13.

Proof. In order to compare the payoffs corresponding to the two constrained optimal effort

schedules we must first find out what they look like. We start with the payoff schedule

corresponding to eN (τ), i.e. the case when the student is constrained to not attending

college. In this case, the schedule is given by

ŜN (τ) = S(eN (τ); τ) = g̃(q, τ, eN (τ))− C(eN (τ)) (5.14)

We know that at τ = 0, g̃ = 0 and e = 0, so ŜN (0) = 0. Next, we know that up to τ1, eN (τ)

satisfies the first order condition in equation 5.9. The slope of ŜN (τ) up to τ1 is thus given

by
∂ŜN (τ)
∂τ

∣∣∣∣∣
τ≤τ1

=
∂g̃

∂τ
+
[
∂g̃

∂e
− C ′(e)

]
∂e

∂τ
=
∂g̃

∂τ
> 0 (5.15)

Beyond τ1, eN (τ) has a slope given by equation 5.8. Using this, the slope of ŜN (τ) beyond

τ1 is given by

∂ŜN (τ)
∂τ

∣∣∣∣∣
τ≥τ1

=
∂g̃

∂τ
+
∂g̃

∂e

(
−
∂g̃
∂τ
∂g̃
∂e

)
− C ′(e)

(
−
∂g̃
∂τ
∂g̃
∂e

)
= C ′(e)

∂g̃
∂τ
∂g̃
∂e

> 0 (5.16)
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Also note that ŜN (τ) is continuous since g̃ and C are continuous and eN (τ) is continuous

(even though it is not differentiable everywhere). Thus, ŜN (τ) starts at the origin and has a

positive slope throughout.

Next, we move to the payoff schedule corresponding to eC(τ), i.e. the case when the

student is constrained to attending college. In this case, the schedule is

ŜC(τ) = S(eC(τ); τ) = k(µ, g̃(q, τ, eC(τ)))− C(eC(τ)) (5.17)

Here, at τ = 0, g̃ = 0 but e → ∞, so SC(0) → −∞. Next, in a manner analogous to above

we can show that
∂ŜC(τ)
∂τ

∣∣∣∣∣
τ≤τ0

= C ′(e)
∂g̃
∂τ
∂g̃
∂e

> 0

∂ŜC(τ)
∂τ

∣∣∣∣∣
τ≥τ0

=
∂k

∂g̃

∂g̃

∂t
> 0

(5.18)

Also, we note that for τ ≥ τ0, ŜC(τ) > ŜN (τ). This can be seen as follows. Between τ0

and τ1, both schedules correspond to unconstrained maxima. However, given any τ , the un-

constrained maximum of k(µ, g̃(q, τ, e))−C(e) will always be greater than the unconstrained

maximum of g̃(q, τ, e) − C(e). This is because k > g̃ at every τ from Assumption 3.3. Be-

yond τ1, ŜN (τ) corresponds to the constrained maxima, which will always be less than the

unconstrained maxima, which in any case is less than ŜC(τ). Finally, we note that ŜC(τ) is

continuous as well. So, we have established that ŜC(τ) begins at −∞, rises throughout, and

beyond τ0 must be greater than ŜN (τ). This means that ŜC(τ) must cross ŜN (τ) only once,

and the crossing must be at some τ∗ < τ0.

Having established this, we can draw Figure 5.2. Now, we are in a position to compare

payoffs. We have established that before τ∗, a student gets a higher payoff not going to

college, and after τ∗ by going to college. Therefore, all students with τ < τ∗ will not go to

college while students with τ ≥ τ∗ will go to college.
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Figure 5.2: Comparing Payoffs to get the Optimal Payoff Schedule

Step 3: The Optimal Effort Schedule

Theorem 5.2. The optimal effort schedule is given by e(τ), which satisfies

∂g̃(q,τ,e(τ))
∂e − C ′(e(τ)) when τ < τ∗

g̃(q, τ, e(τ)) = g∗ when τ∗ ≤ τ ≤ τ0
∂k
∂g̃

∂g̃(q,τ,e(τ))
∂e − C ′(e(τ)) when τ ≥ τ0

(5.19)

Proof. From Lemma 5.4, we know that students with τ < τ∗ will go to school, so the optimal

effort before τ∗ is given by eN (τ). Similarly, students with τ ≥ τ∗ will go to college, so over

this range the optimal effort is given by eC(τ). This is displayed in Figure 5.3.

Figure 5.3 has the following intuitive interpretation. For people with extremely low levels

of τ (i.e., τ < τ∗), it takes too much effort to get into college and the disutility of putting

that effort in is greater than the extra returns. So they choose to ‘take it easy’, as it were,

and do not work hard enough to get into college. People with extremely high levels of τ (i.e.

τ ≥ τ0) also need not put any ‘extra’ effort in, as they will get into college without trying

harder than they have to. For these two sets of people, the only incentive to work is to get

most out of school and college respectively. The fact that going to college increases returns
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Figure 5.3: The Optimal Effort Schedule

is not a binding factor in either of these cases, and so does not provide any extra incentive.

For people in the mid-range (i.e. τ∗ ≤ τ ≤ τ0), there is an added incentive to work hard, as

working harder means that they get into college and enjoy higher returns. These students

have a corner optimum because getting in to college is a binding constraint.

5.2.3 The Cut-Off Grade

From the preceding analysis, we know that all students with τ ≥ τ∗ must go to college.

However, the admissions constraint must also be satisfied. Therefore, τ∗ must be determined

by

[(1− FH(τ∗))λ+ (1− FL(τ∗)) (1− λ)]n = Ā (5.20)

Once τ∗ is determined, we must find a g∗ that is consistent with it. This can be done as

follows. τ∗ is determined by the crossing of the two constrained maximum payoff schedules.

We know that this crossing takes place before τ0, where ŜC(τ) depends on g∗. Thus, having

determined τ∗, we only need to find a g∗ so that ŜC(τ∗) = ŜN (τ∗).

An alternate method of calculating the cut-off grade would be to first determine the

distribution of grades and then directly determine g∗, but this way is completely equivalent

to the one described as the distribution of grades would depend critically on the distribution
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of τ .

Theorem 5.3. In the effort choice model, without affirmative action, the H community is

over-represented at the college level.

Proof. From Theorem 5.1, (1− FH(τ∗)) ≥ (1− FL(τ∗)).

5.2.4 Realized Human Capital

We shall first determine the level of realized human capital for each level of τ . We proceed as

follows. For τ < τ∗, the student does not go to college, so the realized human capital is just

g̃(q, τ, e(τ)). We know that over this range, e(τ) is increasing, so as τ increases, g̃(q, τ, e(τ))

increases as well. For τ∗ ≤ τ ≤ τ0, we know that the student goes to college, and so realized

human capital is k(µ, g̃(q, τ, e(τ))). However, we know that in this range e(τ) is decreasing

so that grades are constant at g̃(q, τ, e(τ)) = g∗. Hence, in this range, realized human capital

is also constant at k(µ, g∗). Finally, for τ ≥ τ0, we again have the students going to college,

but now e(τ) is increasing, and so human capital is also increasing. We also note that κ(τ)

must be continuous everywhere except at τ∗, where there will be an upward jump. This is

because e(τ) is continuous everywhere except at τ∗, where there is a positive jump. We can

thus describe the realized human capital schedule by

κ(τ) =


g̃(q, τ, e(τ)) when τ < τ∗

k(µ, g̃(q, τ, e(τ))) = k(µ, g∗) when τ∗ ≤ τ ≤ τ0

k(µ, g̃(q, τ, e(τ))) when τ ≥ τ0

(5.21)

Note that the realized human capital schedule always has a non-negative slope. κ(τ) can be

displayed diagrammatically as in Figure 5.4.

Average human capital for caste i is then given by

k̃i =
∫ ∞

0
κ(τ) dFi(τ) (5.22)

Lemma 5.5. The distribution of realized human capital is unequal, with k̃H ≥ k̃L.

Proof. Integrating by parts, we get

k̃i =
∫ ∞

0
κ′(τ) (1− Fi(τ)) dτ (5.23)
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Figure 5.4: Realized Human Capital

Now, we know that κ′(τ) is non-negative and 1−FH(τ) ≥ 1−FL(τ) from Theorem 5.1, and

so the result follows.

5.2.5 Students’ Welfare

The realized welfare for students is described by Ŝ(τ) as in Lemma 5.4, and can be drawn as

in Figure 5.2. We again note that Ŝ′(τ) is non-negative.

Average welfare for caste i is given by

S̃i =
∫ ∞

0
Ŝ(τ) dFi(τ) (5.24)

Lemma 5.6. The distribution of realized welfare is unequal, with S̃H ≥ S̃L.

Proof. Analogous to that of Lemma 5.5.

5.3 Affirmative Action

Equal representation implies the choosing of two cut-off grades g∗H and g∗L such that the same

proportion of each caste gets into college. Let us first look at what changes a new cut-off

grade implies for optimal effort.
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5.3.1 Solving for Optimal Effort

One can solve for optimal effort in the same way as earlier. The only difference with affir-

mative action is that the generic cut-off grade g∗ is replaced by g∗i for caste i. Thus, we can

go through the same three steps for caste i, using g∗i in place of g∗. We will obtain eCi(τ)

and eNi(τ) schedules in Step 1; a Ŝi(τ) schedule in Step 2; and an ei(τ) schedule in step

three with functional forms exactly the same as given in Lemmas 5.3 and 5.4 and Theorem

5.2 except that g∗ will be replaced by g∗i . We can also determine τ0i, τ1i and τ∗i just as we

determined τ0, τ1 and τ∗ before.

We now determine how the values of τ0i, τ1i and τ∗i move in relation to τ0, τ1 and τ∗ as

g∗ moves to g∗i .

Lemma 5.7. τ0i > τ0 and τ1i > τ1 if g∗i > g∗ and vice versa.

Proof. The effects of an increase in the cut-off grade are illustrated in Figure 5.5. We first

 

  

 

 

 

 

 
 

  

 

 

 

 

 

 

  

 

Figure 5.5: The Effect of Increasing g∗

note that an increase in g∗ to g∗i implies that GG shifts out and to the right. To see this, we

note that GG has become g̃(a, τ, e) = g∗i , so for every level of τ , a higher level of e is needed

as the grade that needs to be achieved has increased. Also, NN and CC remain the same,

as g∗ does not enter into their determination. Now it is obvious that since the negatively

sloped line has moved outwards, its intersections with the positively sloped lines will also
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move outwards. Similarly, one can show that if g∗ falls, τ0 and τ1 will reduce.

Lemma 5.8. τ∗i > τ∗ if g∗I > g∗ and vice versa.

Proof. The effects of increasing the cut-off grade on the payoff schedules are depicted in

Figure 5.6.

 

     

 

 

 

   

 

 

Figure 5.6: The Effect of Increasing g∗ on the Payoff Schedule

We first look at what happens to ŜN (τ) and ŜC(τ) as g∗ changes. Looking first at ŜNi(τ),

we notice that g∗ enters into its determination only after τ1i. Given the new effort schedule

eNi(τ) we just obtained while proving Lemma 5.7, we can see that if g∗i > g∗, the effort levels

in this range increase, and move closer to the optimum. Remember that g̃(q, τ, e) − C(e) is

concave in e, and so move closer to the optimum must raise welfare in this range. However, as

this is still less than the unconstrained maximum, which itself is less than the unconstrained

maximum of k(µ, g̃(q, τ, e))−C(e) at each point, the increase will not be enough to rise above

ŜC(τ). Also note that since τ0 has moved to τ0i, ŜNi(τ) contains an additional extension of

the original pre-τ0 section so that we get a continuous curve.

Now, we look at ŜCi(τ). Here, g∗ enters into the determination of the function before τ0i.

Again, given the new effort schedule eCi(τ) obtained in the proof of Lemma 5.7, we know

that over this range, effort has increased, and moved further away from the optimum, which

will reduce payoff as we know that k(µ, g(q, τ, e)) − C(e) is concave in e. Again, as τ∗ has
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risen to τ∗H , ŜCi(τ) does not contain the section of ŜC(τ) between τ∗ and τ∗H .

Since the intersection of ŜCi(τ) and ŜNi(τ) must take place before τ0i, and the section

of ŜCi(τ) corresponding to this range (the steeper positively sloped curve) has moved down

while that of ŜNi(τ) has not shifted (the flatter positively sloped curve), the intersection must

be at a higher point, i.e. τ∗i > τ∗.

It can similarly be shown that if g∗i < g∗, then τ∗i < τ∗.

5.3.2 The Cut-Off Grades

Lemma 5.9. In the effort choice model, affirmative action leads to a rise in the cut-off grade

for the high-caste and a fall for the low-caste.

Proof. As before, we know that everyone from caste i with τ ≥ τ∗i will go to college. This

means that a proportion 1 − Fi(τ∗i ) of each caste will go to college. The only way then to

achieve equal representation would be to set

1− FH(τ∗H) = 1− FL(τ∗L) (5.25)

This equal representation condition along with the admissions constraint

[(1− FH(τ∗H))λ+ (1− FL(τ∗L)) (1− λ)]n = Ā (5.26)

will determine τ∗H and τ∗L. Analogously to the proof of Lemma 3.3, we can show that τ∗H ≥

τ∗ ≥ τ∗L.

Then we can determine the corresponding g∗H and g∗L in the way described previously, by

finding a g∗i for each i such that ŜCi(τ∗i ) = ŜNi(τ∗i ). However, we know from Lemma 5.8 that

τ∗ must move in the same direction as g∗i , which leads to our result.

5.3.3 Effect on Effort Choice

Theorem 5.4. For high-caste people, affirmative action leads to reduced effort only for the

people who lose college seats. For others, effort either stays constant or rises. The effect on

average effort is ambiguous.

Proof. We have so far established that for the H people, the cut-off must rise. We also know

that this implies the GG curve will shift in a north-easterly direction, NN and CC will not
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change, τ∗H ≥ τ∗ and τ0H ≥ τ0. We also assume for expositional simplicity that τ∗H ≤ τ0.

This situation is depicted in Figure 5.7.

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

Figure 5.7: Effect on high-caste Effort

Consider people with τ ∈ [0, τ∗). The effort schedules with and without affirmative action

correspond exactly. For these people, without affirmative action, the extra work required to

get into college and the consequent disutility meant that they got a higher payoff not trying

to get into college. With affirmative action increasing the cut-off, they would require an even

higher level of effort to get into college, which would clearly involve even more disutility.

People with τ ∈ [τ∗, τ∗H) earlier found that the increased payoffs due to attending college

outweighed the costs of working extra-hard to get in. Now, however, it requires more effort to

get in, which makes the costs increase to outweigh benefits. These people will therefore settle

for not going to college and will reduce effort, as it is now too difficult to get into college.

People with τ ∈ [τ∗H , τ0] found it worthwhile without affirmative action to work extra-

hard to get into college. Now, getting into college takes even more effort, but even with the

increased effort going to college gives them a higher payoff than settling for just a school

education. So, these people increase their effort levels in a bid to get into college.

People with τ ∈ [τ0, τ0H) did not earlier need to try extra-hard to get into college, but

with affirmative action, the old effort levels would give them grades not good enough to get

into college anymore. So, these people must increase effort levels to ensure they get into
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college.

Lastly, for people with extremely high values of τ , i.e. τ ∈ [τ0H ,∞), the grades they

were attaining without affirmative action are high enough to guarantee them college seats

even after affirmative action. They still do not need to bother about getting into college and

therefore face no incentive to change effort levels.

As is apparent, the effect on average effort is ambiguous as it depends on the probability

mass fH(τ) that exists in each of these intervals. It is important to note, though, that

affirmative action can result in a case where average effort for the high-caste increases.

Theorem 5.5. For low-caste people, affirmative action leads to increased effort only for

people who gain college seats. For others, effort either falls or remains the same. The effect

on average effort is ambiguous.

Proof. Given earlier results, we know that the cut-off grade will fall, the GG curve will shift

in a south-westerly direction, NN and CC will not change, τ∗L ≤ τ∗ and τ0L ≤ τ0. Again, for

expositional simplicity, we assume that τ0L ≥ τ∗. This situation is depicted in Figure 5.8.

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

Figure 5.8: Effect on low-caste Effort

Consider people with τ ∈ [0, τ∗L). These people earlier found that the disutility from

working extra-hard to get into college far outweighed the increase in human capital as a

result of a college education. However, these people have a combination of parent’s human
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capital and ability which is so low that even the reduced effort they need to put in to get

into college after affirmative action is too high for them to not be content with just a school

education. Effort in this range thus remains unchanged.

For people with τ ∈ [τ∗L, τ
∗) who were earlier content with just a school education, the

reduction in the cut-off grade and consequently the effort cost required to get them into

college means that now the increase in human capital that comes with a college education

outweigh the extra costs. These people will then increase effort in order to get into college.

People with τ ∈ [τ∗, τ0L] can now get into college with less work, but the reduction in

the cut-off is not sufficient for the ‘getting into college’ constraint to stop binding. So, these

people continue to work extra-hard, but less so than without affirmative action.

For people with τ ∈ [τ0L, τ0), the ‘getting into college’ constraint is no longer binding.

They can move to their unconstrained optima and so reduce effort as they need not worry

about working extra-hard just to get into college.

People with τ ∈ [τ0,∞) did not have to worry about getting in to college before affirmative

action, so if the cut-off falls, they still do not need to worry about it and therefore will continue

on their unconstrained maxima.

Again, the effect on average effort depends on the distribution of τ , but it is important

to note the possibility of cases where affirmative action reduces average effort for the low-

caste.

5.3.4 Realized Human Capital

We can now determine human capital for caste i in a manner analogous to the case without

affirmative action to get

κi(τ) =


g̃(q, τ, ei(τ)) when τ < τ∗i

k(µ, g̃(q, τ, ei(τ))) = k(µ, g∗i ) when τ∗i ≤ τ ≤ τ0i

k(µ, g̃(q, τ, ei(τ))) when τ ≥ τ0i

(5.27)

Lemma 5.10. For the high-caste, realized human capital falls only for people who have lost

college seats due to affirmative action. For the others, human capital either rises or stays

constant.

Proof. Given that τ∗H ≥ τ∗ and τ0H ≥ τ0, and assuming for expositional simplicity that

τ∗H ≤ τ0, we can draw Figure 5.9.
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Figure 5.9: Effect on high-caste Human Capital

It is apparent that for people with τ ∈ [0, τ∗), nothing changes as effort levels have

not changed. For people with τ ∈ [τ∗, τ∗H), human capital declines. This is because these

people no longer have an extra incentive to work hard just to get into college, leading to

a reduction in human capital through the reduced effort as well as through losing out on a

college education. For people with τ ∈ [τ∗H , τ0] human capital increases as a manifestation of

the increased effort that they must now put in to secure a college seat. The same holds true

for people with τ ∈ [τ0, τ0H), for whom getting into college has become a binding constraint.

Lastly, for people with τ ∈ [τ0H ,∞), human capital is unchanged as effort is unchanged.

The effect on average human capital, again, depends on FH(τ), and if there is enough

probability mass in [τ∗H , τ0H) then it is possible for high-caste average human capital for to

increase as a result of affirmative action.

Lemma 5.11. For the low-caste, realized human capital rises only for those who have gained

college seats due to affirmative action. For others, human capital either falls or stays constant.

Proof. We know that τ∗L ≤ τ∗ and τ0L ≤ τ0. We assume again that the two distributions of

τ aren’t very far apart so that τ∗ ≤ τ0L. Analogous to Figure 5.9, we can then draw Figure

5.10.

The analysis proceeds as before. For people with τ ∈ [0, τ∗L), human capital is unchanged
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Figure 5.10: Effect on low-caste Human Capital

because effort is unchanged. People with τ ∈ [τ∗L, τ
∗) have a new incentive to work hard as

it is now worthwhile for them to go to college. Human capital increases for them through

the increased effort as well as through gaining a college education, which increases human

capital for any effort level. For people with τ ∈ [τ∗, τ0L] human capital falls because of the

reduced effort they must put in to secure a college seat. For people with τ ∈ [τ0L, τ0) getting

into college is no longer a binding constraint, and so effort levels are reduced, leading to a

fall in human capital. Lastly, for people with τ ∈ [τ0,∞), human capital remains constant as

there are no incentives to change effort levels.

As above, the effect on average human capital depends on FL(τ), and if there is enough

probability mass in [τ∗, τ0) then it is possible for low-caste average human capital to decrease

as a result of affirmative action.

Theorem 5.6. If enough probability mass of FH(τ) lies in [τ∗H , τ0H) and enough probability

mass of FL(τ) lies in [τ∗, τ0), then inequality in human capital will increase.

Proof. Follows immediately from Lemmas 5.10 and 5.11.

As an illustration of such a situation, let us examine Figure 5.11. As we can clearly see,

the increase in effort for the low-caste in the range [τ∗L, τ
∗) will very likely be outweighed by

the decline in the range [τ∗, τ0), so that average human capital falls. Similarly, for the high-
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Figure 5.11: An Illustration of Increasing Inequality

caste, the reduction in effort in the range [τ∗, τ∗H) will likely be outweighed by the increase

in the range [τ∗H , τ0H).

This diagram gives rise to a few rules of thumb. Firstly, notice that since the increase

in high-caste human capital and the decrease in low-caste human capital come to the right

of the initial cut-off, if the initial cut-off is towards the ends of the distributions (beyond

which there is comparatively little mass), the low-caste decline and the high-caste increase

is experienced by very few people, and inequality is more likely to decrease. If, on the

other hand, the initial cut-off is at a point beyond which there is substantial mass in both

distributions, then inequality is likely to widen. The position of the cut-off depends on the

number of seats available relative to the population; a small number means a high cut-off,

whereas a moderate number will mean a cut-off more towards the middle of the distributions.

One must take care while thinking about this in terms of real world scenarios, though, as

in our model, everyone in the population goes to school and would get a higher payoff by

going to college if they did not have to compete for a limited number of places (i.e. if the

GG curve didn’t exist). In the real world, especially in developing countries, not everyone

goes to school, even fewer finish, and not everyone who finishes would have a higher payoff

from going to college in an unconstrained world (e.g. children who take up farming as an

occupation might view going to college as more of an opportunity cost). Our ‘population’
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should thus be compared to the real world set of people who finish school and would prefer

to go to college in an unconstrained world.

Secondly, the distance between τ∗ and τ0 (and that between τ∗H and τ0H) is crucial, as a

large distance means that an increase in inequality is likely. Intuitively, this distance will be

large if a college education adds a lot to school education. This is because if there is more to

be gained from a college education relative to a school education, more people are likely to

find it attractive to work ‘extra-hard’ to get into college, and these are precisely the people

who constitute the range [τ∗, τ0).

Lastly, the distance between τ∗ and τ∗i for each caste is also important, as small distances

mean that an increase in inequality is likely. These distances are determined by how far apart

the distributions are. If the distributions are not very far apart, the adjustments required

to achieve equal representation are small, as there would not be a very large difference

between the probability masses of the two distributions to the right of the initial cut-off.

This provides an interesting opportunity for a dynamic model, as intuitively we could have

a state of permanent inequality despite affirmative action. The reasoning would be that if

the the distributions are far apart to start off with, other things staying constant, inequality

would reduce for the current generation. But since human capital usually translates very

well into income, the income of the next generation’s parents would be more equal, and so

their distributions of τ would also be more equal. But this means that the distance between

τ∗ and τ∗i for the next generation will be smaller, leading to a smaller decrease in inequality.

This process would continue until the point where the distributions of τ become close enough

so that inequality no longer decreases. Indeed, one could have a case where affirmative action

increases inequality over time if the distributions are sufficiently close together to begin with.

Formalizing these ideas is a task for future research.

5.3.5 Effect on Students’ Welfare

Lemma 5.12. For the high-caste, welfare falls in the range (τ∗, τ0H) and remains constant

elsewhere. Average welfare falls.

Proof. This situation is depicted in Figure 5.6 with i = H.

For people with τ < τ∗, we know that effort levels do not change and they still do not

go to college. So, welfare remains unchanged. People with τ = τ∗ were earlier indifferent

between going to college and not going. Now that going to college involves a higher effort
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cost than before, they strictly prefer not going to college, but since the payoff from not going

to college hasn’t changed, they continue to receive the same payoff. People with τ ∈ (τ∗, τ∗H)

have lost college seats due to affirmative action, and earlier strictly preferred going to college

to not going. An increase in the effort levels required to go to college has reduced the payoff

from going to college, so that they now prefer not to go. Since they strictly preferred to go

earlier, this reduces welfare. People with τ ∈ [τ∗H , τ0) still go to college, but must now work

even harder to do so, which clearly reduces welfare. For people with τ ∈ [τ0, τ0H), going to

college has become a binding constraint. They are forced to work harder in order to secure

a college seat whereas earlier they operated on their unconstrained maxima. The move from

unconstrained to constrained maxima implies a reduction in welfare. People with τ ≥ τ0H

continue to go to college without any increase in effort, and so welfare remains unchanged.

As welfare falls over some ranges and remains constant over others, average welfare for

the high-caste must fall.

Lemma 5.13. For the low-caste, welfare increases in the range (τ∗L, τ0) and remains constant

elsewhere. Average welfare rises.

Proof. The effect on low-caste welfare is depicted in Figure 5.12.

 

     

 

 

 

   

 

 

Figure 5.12: Effect on low-caste Welfare

People with τ < τ∗L do not go to college, with or without affirmative action. We also
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know their effort levels are unchanged, so their welfare in unchanged. People with τ = τ∗

earlier strictly preferred not going to college, but are now indifferent between going and not

going. As the payoff from not going hasn’t changed, the indifference implies that they receive

the same payoff. For people with τ ∈ (τ∗L, τ
∗) have gained college seats. They earlier strictly

preferred not going to college, but the reduction in cut-off has meant that getting into college

requires less effort, and this has increased the payoff from going to college to an extent that

they now prefer to go to college. This must increase welfare, as the payoff from not going to

college has not changed. People with τ ∈ [τ∗, τ0L) continue to go to college, but have to put

in less effort to secure a college seat. This moves them closer to their unconstrained optima,

which, as we have earlier argued, must increase welfare. For people with τ ∈ [τ0L, τ0), getting

into college is no longer a constraint, and they can continue to go to college while reducing

their effort levels to the unconstrained optima, which must give them higher welfare than

operating at constrained optima. Lastly, people with τ ≥ τ0 continue to go to college and

operate on their unconstrained optima, so welfare remains constant.

Average welfare must rise, as over some ranges of τ welfare rises while over others it

remains constant.

5.4 Summary of Main Results

In this chapter, we introduced students as economic decision makers by allowing them to

choose an effort level in order to maximize their human capital. We noted an important

discontinuity in the students’ payoff which arose from the value added by college for those

people who managed to secure a college seat. We found that this discontinuity had interesting

implications for effort incentives. Students who were not very well equipped to gain from

education settled for a school education and chose low effort levels. Students who were very

well equipped chose moderately high levels of effort, and got into college without trying

‘extra-hard’. However, students who were moderately equipped faced incentives to work

‘extra-hard’ to secure admission into college. We also found that realized human capital and

welfare were unequally distributed.

Affirmative action had interesting effects on effort. While effort levels increased for those

low-caste students who gained college seats, effort incentives were reduced for the low-caste

candidates who earlier had to work ‘extra-hard’ to get into college as the reduction in cut-off
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meant it took less work to secure admission. For the high-caste, the effect was exactly the

opposite, with reduced effort for those losing college seats, but increased effort for those who

still went to college, but had to work even harder to achieve the increased cut-off grade.

We found that these effects were transferred to human capital, and this gave rise to the

possibility of increased inequality as a result of affirmative action under certain conditions.

Welfare, however, unambiguously fell for the high-caste and rose for the low-caste.



Chapter 6

Conclusion and Avenues for

Further Research

This thesis is among the first contributions that seek to provide a theoretical framework for

the analysis of affirmative action policies in countries with institutional structures different

from the US. Specifically, college admissions are not taken to be decisions made by economic

agents, rather they are completely mechanical.

In the baseline model, we found that inequality in human capital decreases due to a shift

in college seats from high to low-caste candidates. However, there is a fall in economy-wide

human capital, because the gainers are less able to take advantage of a college education by

virtue of being less qualified than the high-caste candidates they displace.

In the differences in school quality model, we found that good quality schools catering to

the high-caste experience a reduction in quality because the relative attractiveness of low-

caste students increases leading to reduced incentives to bid up quality to attract high-caste

students. Bad quality schools face an incentive to shift quality in a way that puts more people

in the vicinity of the cut-off grade, so as to take full advantage of the reduction in the cut-off.

There is thus the possibility that bad quality schools also experience a quality reduction,

leading to a general reduction in school quality and in extreme cases a general reduction in

human capital without any beneficial effect on inequality.

In the effort choice model, we found that while affirmative action does increase effort

incentives for the section of the low-caste population that acquires college seats, for other

low-caste people, effort incentives are reduced as ensuring a college seat becomes much easier.

Similarly, although affirmative action reduces effort levels for the high-caste people that lose
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seats, it increases effort incentives for other high-caste members as ensuring a college seat has

become much tougher. This can again give rise to perverse effects because if effort increases

for a sufficient number of high-caste people and reduces for a sufficient number of low-caste

people, human capital attainment may increase for the high-caste and decrease for the low,

leading to an increase in inequality.

Affirmative action is a hotly debated topic the world over, and this thesis has been an

attempt to more rigorously think about and understand some of the incentive structures at

play. The value of such work to the policy debate is obvious.

This thesis is by no means a completely rigorous analysis of the topic. Many issues remain

unaddressed. This research could be further enriched and complemented by future research

along the following lines.

1. Dynamics. A desirable addition to this method of analysis would be an explicit inter-

generational inequality transmission mechanism that preserves the basic features of

these models. Perhaps one could have the human capital of one generation translate

into the parental income for the next. This will allow us to investigate whether, given

initial taste-based discrimination, inequality will ever fade away, and if so, how quickly.

We could then investigate whether the introduction of affirmative action can break

states of perpetual inequality, or indeed lead to the reduction of inequality at a faster

rate. In Chapter 5 we argued that there may be cases where affirmative action itself

could lead to perpetual inequality.

2. Empirical estimation and validation. The usefulness of this research to policy

makers would be magnified if data that allows the estimation of the joint distribution of

ability and parental income, the school and college human capital production functions

and associated cost functions could be collected. The models could be re-formulated as

structural models, and the estimated parameters would allow more specific predictions

about the effects of affirmative action policies under prevailing conditions. This thesis

has noted that affirmative action may have perverse effects under certain conditions;

empirical work is required to test whether those conditions hold in reality. Also, once

the prevailing conditions are identified, data on incomes could be used to validate the

results.

3. Liquidity constraints and costly education. We have abstracted so far from the
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obvious reality that often good quality schools charge high fees, which cannot be af-

forded by everyone. Access to education may thus be restricted by the ability to pay,

and if this ability is unevenly distributed, then liquidity constraints alone could result

in inequality being perpetuated.

4. Peer effects. We have throughout this thesis we have not considered whether a stu-

dent’s human capital formation is influenced by the education level of his peers. Other

authors1 have considered such externality effects important. Research needs to be done

into whether these effects exist in practice and, if so, these effects must be incorporated

into the models presented in the thesis.

5. Strength of affirmative action policies. In this thesis, we have only considered

affirmative action policies that aim at equal representation at the college level. We

could extend this work by letting the strength of affirmative action policies vary, and

examine outcomes in different scenarios, analogous to the work in Fryer et al. (2008).

We may also build a model of the optimal strength of affirmative action policies.

6. Alternative policies for reducing inter-caste inequality. Serious thought needs

to be given to alternate methods of reducing inequality, and their functioning must be

compared to affirmative action as it exists today. For instance, could policies based

on income targeting rather than caste targeting better achieve the desired results? In

addition, should primary and secondary education be the focus rather than higher

education?

1For example see Durlauf (2008) and De Fraja (2002).
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